861 resultados para Mach-Zehnder interferometers
Resumo:
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10−8). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
Resumo:
Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10−8), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ~2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
Resumo:
Unsteady nonsimilar laminar compressibletwo-dimensional and axisymmetric boundarylayer flows have been studied when external velocity varies arbitrarily with time and the flow is nonhomentropic. The governing nonlinear partial differential equations with three independent variables have been solved using an implicit finite difference scheme with quasilinearization technique from the origin to the point of zero skin-friction. The results have been obtained for (i) an accelerating stream and (ii) a fluctuating stream. The skin friction responds to the fluctuations in the free stream more compared to the heat transfer. It is observed that Mach number and hot wall cause the point of zero skin friction to occur earlier whereas cold wall delays it.
Application of Artificial Viscosity in Establishing Supercritical Solutions to the Transonic Integra
Resumo:
The nonlinear singular integral equation of transonic flow is examined in the free-stream Mach number range where only solutions with shocks are known to exist. It is shown that, by the addition of an artificial viscosity term to the integral equation, even the direct iterative scheme, with the linear solution as the initial iterate, leads to convergence. Detailed tables indicating how the solution varies with changes in the parameters of the artificial viscosity term are also given. In the best cases (when the artificial viscosity is smallest), the solutions compare well with known results, their characteristic feature being the representation of the shock by steep gradients rather than by abrupt discontinuities. However, 'sharp-shock solutions' have also been obtained by the implementation of a quadratic iterative scheme with the 'artificial viscosity solution' as the initial iterate; the converged solution with a sharp shock is obtained with only a few more iterates. Finally, a review is given of various shock-capturing and shock-fitting schemes for the transonic flow equations in general, and for the transonic integral equation in particular, frequent comparisons being made with the approach of this paper.
Resumo:
A mechanics based linear analysis of the problem of dynamic instabilities in slender space launch vehicles is undertaken. The flexible body dynamics of the moving vehicle is studied in an inertial frame of reference, including velocity induced curvature effects, which have not been considered so far in the published literature. Coupling among the rigid-body modes, the longitudinal vibrational modes and the transverse vibrational modes due to asymmetric lifting-body cross-section are considered. The model also incorporates the effects of aerodynamic forces and the propulsive thrust of the vehicle. The effects of the coupling between the combustion process (mass variation, developed thrust etc.) and the variables involved in the flexible body dynamics (displacements and velocities) are clearly brought out. The model is one-dimensional, and it can be employed to idealised slender vehicles with complex shapes. Computer simulations are carried out using a standard eigenvalue problem within h-p finite element modelling framework. Stability regimes for a vehicle subjected to propulsive thrust are validated by comparing the results from published literature. Numerical simulations are carried out for a representative vehicle to determine the instability regimes with vehicle speed and propulsive thrust as the parameters. The phenomena of static instability (divergence) and dynamic instability (flutter) are observed. The results at low Mach number match closely with the results obtained from previous models published in the literature.
Resumo:
Drag reduction studies are conducted using a flat disc tipped aerospike for a 120-degree apex angle blunt cone model in high enthalpy flows. Accelerometer based force balance is used for the drag force measurement in the newly established free piston driven shock tunnel, HST3. Drag reduction upto about 58 percent has been achieved for Mach 8 flow of 5 MJ/kg specific enthalpy at zero degree angle of attack.
Resumo:
Numerical and experimental studies of a supersonic jet (Helium) inclined at 45 degrees to a oncoming Mach 2 flow have been carried out. The numerical study has been used to arrive at a geometry that could reduce an oncoming Mach 5.75 flow to Mach 2 flow and in determining the jet parameters. Experiments are carried out in the IISc. hypersonic shock tunnel HST2 at similar conditions obtained from numerical studies. Flow visualization studies carried out using Schlieren technique clearly show the presence of the bow shock in front of the jet exposed to supersonic cross flow. The jet Mach number is experimentally found to be approximate to 3. Visual observations show that the jet has penetrated up to 60% of the total height of the chamber.
Resumo:
Forward facing circular nose cavity of 6 mm diameter in the nose portion of a generic missile shaped bodies is proposed to reduce the stagnation zone heat transfer. About 25% reduction in stagnation zone heat transfer is measured using platinum thin film sensors at Mach 8 in the IISc hypersonic shock tunnel. The presence of nose cavity does not alter the fundamental aerodynamic coefficients of the slender body. The experimental results along with the numerically predicted results is also discussed in this paper.
Resumo:
Two backward facing step (2 mm and 3 mm step height) models are selected for surface heat transfer measurements. The platinum thin film gauges are deposited on the Macor inserts using both hand paint and vacuum sputtering technique. Using the Eckert reference temperature method the heating rates has been theoretically calculated along the flat plate portion of the model and the theoretical estimates are compared with experimentally determined surface heat transfer rate. Theoretical analysis of heat flux distribution down stream of the backward facing step model has been carried out using Gai’s non-dimensional analysis. Based on the measured surface heating rates on the backward facing step, the reattachment distance is estimated for 2 and 3 mm step height at nominal Mach number of 7.6. It has been found from the present study that for 2 and 3 mm step height, it approximately takes about 10 and 8 step heights downstream of the model respectively for the flow to re-attach.
Resumo:
This paper reports the basic design of a new six component force balance system using miniature piezoelectric accelerometers to measure all aerodynamic forces and moments for a test model in hypersonic shock tunnel (HST2). Since the flow duration in a hypersonic shock tunnel is of the order of $1$ ms, the balance system [1] uses fast response accelerometers (PCB Piezotronics; frequency range of 1-10 kHz) for obtaining the aerodynamic data. The alance system has been used to measure the basic aerodynamic forces and moments on a missile shaped body at Mach $8$ in the IISc hypersonic shock tunnel. The experimentally measured values match well with theoretical predictions.
Resumo:
An experimental and numerical study is presented to show the effect of cowl length and angle on the ramp/cowl shock interaction phenomena fora two-dimensional planar scramjet inlet model. Experiments areconducted in a hypersonic shock tunnel, at Mach 8, at four lengths of owl and three cowl angles. Investigations include schlieren flow Visualization near the cowl region and static pressure and heat transfer rate measurement inside the inlet chamber. Various ramp/cowl shock interaction processes resulted for different cowl configurations have been visualized using a high-speed camera. Edney type-II interference pattern is observed for 131 and 141-mm cowl lengths,whereas it is an Edney type-I interference pattern in case of a 151 mm cowl with all their typical features resulting because of the ramp/cowl shock interaction. Experiments with a cowl configuration other than 0deg show the flow to he established through the inlet because or the reduced contraction ratio. Heat transfer peaks can be observed for the10 and 20-deg cowl cases where flow through the inlet is found to be established. These may serve as the possible locations of fuel injection.
Resumo:
Experiments are carried out with air as the test gas to obtain the surface convective heating rate on a missile shaped body flying at hypersonic speeds. The effect of fins on the surface heating rates of missile frustum is also investigated. The tests are performed in a hypersonic shock tunnel at stagnation enthalpy of 2 MJ/kg and zero degree angle of attack. The experiments are conducted at flow Mach number of 5.75 and 8 with an effective test time of 1 ms. The measured stagnation-point heat-transfer data compares well with the theoretical value estimated using Fay and Riddell expression. The measured heat-transfer rate with fin configuration is slightly higher than that of model without fin. The normalized values of experimentally measured heat transfer rate and Stanton number compare well with the numerically estimated results. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Characteristics of the process of entrainment in plane mixing layers, and the changes with compressibility and heat release, were studied using temporal DNS with simultaneous fluid packet tracking. Convective Mach numbers of the simulations are 0.15, 0.7 and 1.1. The Reynolds number is quite high (between 11 000 and 37 000 based on layer width and velocity difference), and is above the mixing transition. The study agrees with recent findings in round jets: first, engulfed fluid volume and its growth rate are both very small compared with the volume of the turbulent region and its growth rate, respectively. Secondly, most often, the process occurs close to the turbulent-nonturbulent boundaries. A new finding is that both compressibility and heat release retard the entrainment process so that it takes an O(1) time for vorticity or scalar levels to grow even after growth has been initiated. This delay is manifested as the fall in mixing layer growth rates as compressibility and heat release levels increase.
Resumo:
Measurable electrical signal is generated when a gas flows over a variety of solids, including doped semiconductors, even at the modest speed of a few meters per second. The underlying mechanism is an interesting interplay of Bernoulli's principle and the Seebeck effect. The electrical signal depends on the square of Mach number (M) and is proportional to the Seebeck coefficient (S) of the solids. Here we present experimental estimate of the response time of the signal rise and fall process, i.e. how fast the semiconductor materials respond to a steady flow as soon as it is set on or off. A theoretical model is also presented to understand the process and the dependence of the response time on the nature and physical dimensions of the semiconductor material used and they are compared with the experimental observations. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fuel cells are emerging as alternate green power producers for both large power production and for use in automobiles. Hydrogen is seen as the best option as a fuel; however, hydrogen fuel cells require recirculation of unspent hydrogen. A supersonic ejector is an apt device for recirculation in the operating regimes of a hydrogen fuel cell. Optimal ejectors have to be designed to achieve best performances. The use of the vector evaluated particle swarm optimization technique to optimize supersonic ejectors with a focus on its application for hydrogen recirculation in fuel cells is presented here. Two parameters, compression ratio and efficiency, have been identified as the objective functions to be optimized. Their relation to operating and design parameters of ejector is obtained by control volume based analysis using a constant area mixing approximation. The independent parameters considered are the area ratio and the exit Mach number of the nozzle. The optimization is carried out at a particularentrainment ratio and results in a set of nondominated solutions, the Pareto front. A set of such curves can be used for choosing the optimal design parameters of the ejector.