987 resultados para MYOCYTE NECROSIS
Resumo:
During the last years two studies for the investigation of the etiology of porcine ear necrosis were carried out at the Clinic for Swine of the University of Veterinary Medicine Vienna. In study 1, parameters, which are discussed in this context, were collected by veterinary practitioners by completing specially designed questionnaires in farms with symptoms of the porcine ear necrosis syndrome. In study 2, samples of piglets and feed were collected for laboratory analysis of the most important infectious agents as well as mycotoxins. In the present manuscript, the results of both projects were compared. Even if the selection criteria of both studies differed, the affected age class was comparable (5.5 to ten weeks of life in study 1 and six to ten weeks of life in study 2). The herd-specific prevalence of the porcine ear necrosis syndrome varied considerably with percentages between 2 and 10, respectively, to 100%. The evaluation of questionnaires in study 1 showed that 51% of the farms had problems with cannibalism. Particles of plant material, which were frequently seen on the histologic slides of study 2, could have got into the tissue by chewing the ears of the pen mates or cannibalism. Whereas in study 1 the negative effect of parameters as high pig density, suboptimal climate, missing enrichment material and bad quality of feed and water were considered, in study 2 all these factors were checked at sample collection and ruled out as precursor for cannibalism. In both studies bacterial agents proved to be a crucial co-factor for the expansion of the necroses to deeper tissue layers, whereas viral pathogens were classified less important. In both projects it was not possible to estimate the direct impact of infectious agents and mycotoxins as direct trigger of the necroses as well as their participation as co-factors or precursor in the sense of an immunosuppression or previous damage of blood vessels or tissue.
Resumo:
BACKGROUND: TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5) and two decoy (DcR1, and DcR2) receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM), oral premalignancies (OPM), and primary and metastatic oral squamous cell carcinomas (OSCC) in order to characterize the changes in their expression patterns during OSCC initiation and progression. METHODS: DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL) in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. RESULTS: Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. CONCLUSION: Loss of TRAIL expression is an early event during oral carcinogenesis and may be involved in dysregulation of apoptosis and contribute to the molecular carcinogenesis of OSCC. Differential expressions of TRAIL receptors in OSCC do not appear to play a crucial role in their apoptotic rate or metastatic progression.
Resumo:
In previous studies, we found that the improved contractile ability of cardiac myocytes from patients who have had left ventricular assist device (LVAD) support was due to a number of beneficial changes, most notably in calcium handling (increased sarcoplasmic reticulum calcium binding and uptake), improved integrity of cell membranes due to phospholipid reconstruction (reduced lysophospholipid content), and an upregulation of adrenoreceptors (increased adrenoreceptor numbers). However, in the case presented here, there was no increase in adrenoreceptor number, which is something that we usually find in core tissue at the time of LVAD removal or organ transplantation; also, there was no homogeneous postassist device receptor distribution. However, the patient was well maintained for 10 months following LVAD implantation, until a donor organ was available, regardless of the lack of adrenoreceptor improvement. We conclude from these studies that cardiac recovery is the result of the initiation of multiple repair mechanisms, and that the lack of expected changes, in this case increased adrenoreceptors, is not always an accurate indicator of anticipated outcome. We suggest that interventions and strategies have to consider multiple, beneficial changes due to unloading and target a number of biochemical and structural areas to produce improvement, even if not all of these improvements occur.
Infected pancreatic necrosis increases the severity of experimental necrotizing pancreatitis in mice
Resumo:
OBJECTIVE Infection of pancreatic necrosis in necrotizing pancreatitis increases the lethality of patients with acute pancreatitis. To examine mechanisms underlying this clinical observation, we developed and tested a model, in which primary infection of necrosis is achieved in taurocholate-induced pancreatitis in mice. METHODS Sterile necrosis of acute necrotizing pancreatitis was induced by retrograde injection of 4% taurocholate into the common bile duct of Balb/c mice. Primary infection of pancreatic necrosis was induced by coinjecting 10 colony-forming units of Escherichia coli. Animals were killed after 6, 12, 24, 48, and 120 hours, and pancreatic damage and pancreatitis-associated systemic inflammatory response were assessed. RESULTS Mice with pancreatic acinar cell necrosis had an increased bacterial concentration in all tissues and showed sustained bacteremia. Acute pancreatitis was induced only by coinjection of taurocholate and not by bacterial infection alone. Infection of pancreatic necrosis increased pancreatic damage and the pulmonary vascular leak. Serum glucose concentrations serving as a parameter of hepatic function were reduced in mice with infected pancreatic necrosis. CONCLUSIONS Primary infection of pancreatic necrosis with E. coli increases both pancreatic damage and pulmonary and hepatic complications in acute necrotizing pancreatitis in mice.
Resumo:
Regulation of colonic epithelial cell proliferation and differentiation remains poorly understood due to the inability to design a model system which recapitulates these processes. Currently, properties of "differentiation" are studied in colon adenocarcinoma cell lines which can be induced to express some, but not all of the phenotypes of normal cells. In this thesis, the DiFi human colon adenocarcinoma cell line is utilized as an in vitro model system in which to study mucin production. In response to treatment with tumor necrosis factor-alpha, DiFi cells acquire some properties of mucin-producing goblet cells including altered morphology, increased reactivity to wheat germ agglutinin, and increased mucin production as determined by RNA expression as well as reactivity with the MUC-1 antibodies, HMFG-1 and SM-3. Thus, TNF-treated DiFi cells represent one of the few in vitro systems in which mucin expression can be induced.^ DiFi cells express an activated pp60$\sp{{\rm c}-src},$ as do most colon adenocarcinomas and derived cell lines, as well as an amplified epidermal growth factor (EGF) receptor. To assess potential changes in these enzymes during induction of differentiation characteristics, potential changes in the levels and activities of these enzymes were examined. For pp60$\sp{{\rm c}-src},$ no changes were observed in protein levels, specific activity of the kinase, cellular localization, or phosphorylation pattern as determined by Staphylococcus aureus V8 protease partial proteolytic mapping after induction of goblet cell-like phenotypic changes. These results suggest that pp60$\sp{{\rm c}-src}$ is regulated differentially in goblet cells than in absorptive cells, as down-modulation of pp60$\sp{{\rm c}-src}$ kinase occurs in the latter. Therefore, effects on pp60$\sp{{\rm c}-src}$ may be critical in colon regulation, and may be important in generating the various colonic epithelial cell types.^ In contrast to pp60$\sp{{\rm c}-src},$ EGF receptor tyrosine kinase activity decreased ($<$5-fold) after TNF treatment and at the time in which morphologic changes were observed. Similar decreases in tyrosine phosphorylation of EGF receptor were observed as assessed by immunoblotting with an anti-phosphotyrosine antibody. In addition, ($\sp{125}$I) -EGF cell surface binding was reduced approximately 3-fold following TNF treatment with a concomitant reduction in receptor affinity ($<$2-fold). These results suggest that modulation of EGF receptor may be important in goblet cell differentiation. In contrast, other published studies have demonstrated that increases in EGF receptor mRNA and in ($\sp{125}$I) -EGF binding accompany differentiation toward the absorptive cell phenotype. Therefore, differential regulation of both EGF receptor and pp60$\sp{{\rm c}-src}$ occur along the goblet cell and absorptive cell differentiation pathways. Thus, my results suggest that TNF-treated DiFi cells represent a unique system in which to study distinct patterns of regulation of pp60$\sp{{\rm c}-src}$ and EGF receptor in colonic cells, and to determine if increased MUC-1 expression is an early event in goblet cell differentiation. ^
Resumo:
The mitochondrial carnitine palmitoyltransferase (CPT) system is composed of two proteins, CPT-I and CPT-II, involved in the transport of fatty acids into the mitochondrial matrix to undergo $\beta$-oxidation. CPT-I is located outside the inner membrane and CPT-II is located on the inner aspect of the inner membrane. The CPT proteins are distinct with different molecular weights and activities. The malonyl-CoA sensitivity of CPT-I has been proposed as a regulatory step in $\beta$-oxidation. Using the neonatal rat cardiac myocyte, assays were designed to discriminate between these activities in situ using digitonin and Triton X-100. With this methodology, we are able to determine the involvement of the IGF-I pathway in the insulin-mediated increase in CPT activities. Concentrations of digitonin up to 25 $\mu$M fail to release citrate synthase from the mitochondrial matrix or alter the malonyl-CoA sensitivity of CPT-I. If the mitochondrial matrix was exposed, malonyl-CoA insensitive CPT-II would reduce malonyl-CoA sensitivity. In contrast to digitonin, Triton X-100 (0.15%) releases citrate synthase from the matrix and exposes CPT-II. CPT-II activity is confirmed by the absence of malonyl-CoA sensitivity. To examine the effects of various agents on the expression and/or activity of CPT, it is necessary to use serum-free medium to eliminate mitogenic effects of serum proteins. Comparison of different media to optimize CPT activity and cell viability resulted in the decision to use Dulbecco's Modified Eagle medium supplemented with transferrin. In three established models of cardiac hypertrophy using the neonatal rat cardiac myocyte there is a significant increase in CPT-I and CPT-II activity in the treated cells. Analogous to the situation seen in the hypertrophy model, insulin also significantly increases the activity of the mitochondrial proteins CPT-I, CPT-II and cytochrome oxidase with a coinciding increase the expression of CPT-II and cytochrome oxidase mRNA. The removal of serum increases the I$\sb{50}$ (concentration of inhibitor that halves enzyme activity) of CPT-I for malonyl-CoA by four-fold. Incubation with insulin returns I$\sb{50}$ values to serum levels. Incubation with insulin significantly increases malonyl-CoA and ATP levels in the cells with a resulting reduction in palmitate oxidation. Once malonyl-CoA inhibition of CPT-I is removed by permeabilizing the cells, insulin significantly increases the oxidation of palmitoyl-CoA in a manner which parallels the increase in CPT-I activity. Interestingly, CPT-II activity increases significantly only at the tissue culture concentration (1.7 $\mu$M) of insulin suggesting that the IGF-I pathway may be involved. Supporting a role for the IGF-I pathway in the insulin-induced increase in CPT activity is the significant increase in the synthesis of both cellular and mitochondrial proteins as well as increased synthesis of CPT-II. Consistent with an IGF-mediated pathway for the effect of insulin, IGF-I (10 ng/ml) significantly increases the activities of both CPT-I and -II. An IGF-I analogue which inhibits the autophosphorylation of the IGF-I receptor blunts the insulin-mediated increase in CPT-I and -II activity by greater than 70% and virtually eliminates the IGF-I response by greater than 90%. This is the first study to demonstrate the involvement of the IGF-I pathway in the regulation of mitochondrial protein expression, e.g. CPT. ^
Resumo:
Human pro-TNF-$\alpha$ is a 26 kd type II transmembrane protein, and it is the precursor of 17 kd mature TNF. Pro-TNF release mature from its extracellular domain by proteolytic cleavage between resideu Ava ($-$1) and Val (+1). Both forms of TNF are biologically active and the native form of mature TNF is a bell-shaped trimer. The structure of pro-TNF was studied both in intact cell system and in an in vitro translation system by chemical crosslinking. We found that human pro-TNF protein exist as a trimer in intact cells (LPS-induced THP-1 cells and TNF cDNA transfected COS-3 cells) and this trimeric structure is assembled intracellularly, possibly in the ER. By analysis several deletion mutants, we observed a correlation between expression of pro-TNF cytotoxicity in a juxtacrine fashion and detection of the trimer, suggesting the trimeric structure is very important for its biologic activity. With a series of deletion mutants in the linking domain, we found that the small deletion did not block the cleavage and large deletion did regardless of the presence or absence of the native cleavage site, suggesting that the length of the residues between the plasma membrane and the base of the trimer determines the rate of the cleavage, possibly by blocking the accessibility of the cleavage enzyme to its action site. Our data also suggest that the native cleavage site is not sufficient for the release of mature TNF and alternative cleavage site(s) exists. ^
Resumo:
Tumor necrosis factor (TNF)-induced apoptosis is important in immunologic cytotoxicity, autoimmunity, sepsis, normal embryonic development, and wound healing. TNF exerts cytotoxicity on many types of tumor cells but not on normal cells. The molecular events leading to cell death triggered by TNF are still poorly understood. We found that enforced expression of an activated H-ras oncogene converted the non-tumorigenic TNF-resistant C3H 10T1/2 fibroblasts into tumorigenic cells (10TEJ) that also became very sensitive to TNF-induced apoptosis. This finding suggested that the oncogenic form of H-Ras, in which the p21 is locked in the GTP-bound form, could play a role in TNF-induced apoptosis of these cells. To investigate whether Ras activation is an obligatory step in TNF-induced apoptosis, we introduced two different molecular antagonists of Ras, namely the Rap1A tumor suppressor gene or the dominant-negative rasN17 gene, into H-ras transformed 10TEJ cells. Expression of either Rap1A or RasN17 in 10TEJ cells resulted in abrogation of TNF-induced apoptosis. Similar results were obtained by expression of either Ras antagonist in L929 cells, a fibroblast cell line that is sensitive to TNF-induced apoptosis but does not have a ras mutation. The effects of Rap-1A and RasN17 appear to be specific to TNF, since cytotoxicity induced by doxorubicin and thapsigargin are unaffected. Additionally, constitutive apoptosis sensitivity in isolated nuclei, as measured by activation of Ca$\sp{2+}$-dependent endogenous endonuclease, is not affected by Rap-1A or RasN17. Moreover, TNF treatment of L929 cells increased Ras-bound GTP, indicating that Ras activation is triggered by TNF. Thus, Ras activation is required for TNF-induced apoptosis in mouse cells. ^
Resumo:
Organotypic slice culture explants of rat cortical tissue infected with Toxoplasma gondii tachyzoites were applied as an in vitro model to investigate host-pathogen interactions in cerebral toxoplasmosis. The kinetics of parasite proliferation and the effects of interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) in infected organotypic cultures were monitored by light microscopy, transmission electron microscopy (TEM), and quantitative polymerase chain reaction (PCR) assay. As assessed by the loss of the structural integrity of the glial fibrillary acidic protein-intermediate filament network, tachyzoites infected and proliferated mainly within astrocytes, whereas neurons and microglia remained largely unaffected. Toxoplasma gondii proliferation was severely inhibited by IFN-y. However, this inhibition was not linked to tachyzoite-to-bradyzoite stage conversion. In contrast, TNF-alpha treatment resulted in a dramatically enhanced proliferation rate of the parasite. The cellular integrity in IFN-gamma-treated organotypic slice cultures was severely impaired compared with untreated and TNF-alpha-treated cultures. Thus, on infection of organotypic neuronal cultures, IFN-gamma and TNF-alpha exhibit largely detrimental effects, which could contribute to either inhibition or acceleration of parasite proliferation during cerebral toxoplasmosis.
Resumo:
A 1887-bp region at the 5' flank of the human p75 tumor necrosis factor receptor (p75 TNF-R)-encoding gene was found to be active in driving expression of the luc (luciferase-encoding) reporter gene, suggesting that it contains the promoter for the receptor. Rather unexpectedly, a 1827-bp region at the 3' end of the first intron of the p75 TNF-R gene also displayed promoter activity. This activity may be artefactual, reflecting only the presence of an enhancer in this region; yet it also raises the possibility that p75 TNF-R is controlled by more than one promoter and that it encodes various forms of the receptor, or even other proteins. We present here the nucleotide sequences of the 5' flanking and intron regions. Possible implications for the transcriptional regulation of the p75 TNF-R gene are discussed.
Resumo:
Close similarities of various physiological parameters makes the pig one of the preferred animal models for the study of human diseases, especially those involving the cardiovascular system. Unfortunately, the use of pig models to study diseases such as viral hemorrhagic fevers and endotoxic shock syndrome have been hampered by the lack of the necessary immunological tools to measure important immunoregulatory cytokines such as tumor necrosis factor (TNF). Here we describe a TNF-bioassay which is based on the porcine kidney cell line PK(15). Compared to the widely used murine fibroblastoid cell line L929, the PK(15) cell line displays a 100-1000-fold higher sensitivity for porcine TNF-alpha, a higher sensitivity for human TNF-alpha, and a slightly lower sensitivity for murine TNF-alpha. Using a PK(15) bioassay we can detect recombinant TNF-alpha as well as cytotoxic activity in the supernatants of lipopolysaccharide (LPS)-activated porcine monocytes at high dilutions. This suggests that the sensitivity of the test should permit the detection of TNF in biological specimens such as pig serum.
Resumo:
The loci of the porcine tumour necrosis factor genes, alpha (TNFA) and beta (TNFB), have been chromosomally assigned by radioactive in situ hybridization. The genomic probes for TNFA and TNFB yielded signals above 7p11-q11, a region that has been shown earlier to carry the porcine major histocompatibility locus (SLA). These mapping data along with preliminary molecular studies suggest a genomic organization of the SLA that is similar to that of human and murine major histocompatibility complexes.
Resumo:
We have analyzed the chromatin structure of the porcine tumor necrosis factor gene locus (TNF-alpha and TNF-beta). Nuclei from porcine peripheral blood mononuclear cells were digested with different nucleases. As assessed with micrococcal nuclease, the two TNF genes displayed slightly faster digestion kinetics than bulk DNA. Studies with DNaseI revealed distinct DNaseI hypersensitive sites (DH-sites) within the porcine TNF locus. Four DH-sites could be observed in the promoter and mRNA leader regions of the TNF-beta gene. Two DH-sites could be observed for the TNF-alpha gene, one located in the promoter region close to the TATA-box and the other site in intron 3. This pattern of DH-sites was present independently of the activation state of the cells. Interestingly in a porcine macrophage-like cell line, we found that the TNF-alpha promoter DH-site disappeared and another DH-site appeared in the region of intron 1. Additionally, the DH-site of intron 3 could be enhanced by PMA-stimulation in these cells. TNF-beta sites were not detected in this cell line. However, DH-sites were totally absent in fibroblasts (freshly isolated from testicles) and in porcine kidney cells (PK15 cell line) both of which do not transcribe the TNF genes. Therefore, the pattern of DH-sites corresponds to the transcriptional activity of analyzed cells.
Resumo:
We have cloned and sequenced a 10.22-kb fragment of the genomic locus of the porcine tumor necrosis factor-encoding genes, TNF-alpha and TNF-beta. A liver genomic DNA library, partially digested with Sau3AI, was cloned into the phage lambda EMBL4 and screened with a porcine TNF-alpha cDNA probe. Analysis showed that both the TNF-alpha and TNF-beta genes were present on the cloned fragment. In addition, the cloned fragment contained about 2 kb of repetitive sequences 5' to the TNF-beta gene. The TNF genes are arranged in a tandem repeat, as is the case for the human, mouse and rabbit TNF genes. The comparison of both genes with their human homologues displayed a considerable degree of conservation (80%), suggesting an equal evolution rate.