859 resultados para MUSCLE METABOLISM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Regulation of skeletal muscle mass is highly dependent on contractile loading. The purpose of this study was to examine changes in growth factor and inflammatory pathways following high-frequency resistance training. METHODS: Using a novel design in which male Sprague-Dawley rats undertook a "stacked" resistance training protocol designed to generate a summation of transient exercise-induced signaling responses (four bouts of three sets × 10 repetitions of squat exercise, separated by 3 h of recovery), we determined the effects of high training frequency on signaling pathways and transcriptional activity regulating muscle mass. RESULTS: The stacked training regimen resulted in acute suppression of insulin-like growth factor 1 mRNA abundance (P < 0.05) and Akt phosphorylation (P < 0.05), an effect that persisted 48 h after the final training bout. Conversely, stacked training elicited a coordinated increase in the expression of tumor necrosis factor alpha, inhibitor kappa B kinase alpha/beta activity (P < 0.05), and p38 mitogen-activated protein kinase phosphorylation (P < 0.05) at 3 h after each training bout. In addition, the stacked series of resistance exercise bouts induced an increase in p70 S6 kinase phosphorylation 3 h after bouts ×3 and ×4, independent of the phosphorylation state of Akt. CONCLUSIONS: Our results indicate that high resistance training frequency extends the transient activation of inflammatory signaling cascades, concomitant with persistent suppression of key mediators of anabolic responses. We provide novel insights into the effects of the timing of exercise-induced overload and recovery on signal transduction pathways and transcriptional activity regulating skeletal muscle mass in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skeletal muscle is a malleable tissue capable of altering the type and amount of protein in response to disruptions to cellular homeostasis. The process of exercise-induced adaptation in skeletal muscle involves a multitude of signalling mechanisms initiating replication of specific DNA genetic sequences, enabling subsequent translation of the genetic message and ultimately generating a series of amino acids that form new proteins. The functional consequences of these adaptations are determined by training volume, intensity and frequency, and the half-life of the protein. Moreover, many features of the training adaptation are specific to the type of stimulus, such as the mode of exercise. Prolonged endurance training elicits a variety of metabolic and morphological changes, including mitochondrial biogenesis, fast-to-slow fibre-type transformation and substrate metabolism. In contrast, heavy resistance exercise stimulates synthesis of contractile proteins responsible for muscle hypertrophy and increases in maximal contractile force output. Concomitant with the vastly different functional outcomes induced by these diverse exercise modes, the genetic and molecular mechanisms of adaptation are distinct. With recent advances in technology, it is now possible to study the effects of various training interventions on a variety of signalling proteins and early-response genes in skeletal muscle. Although it cannot presently be claimed that such scientific endeavours have influenced the training practices of elite athletes, these new and exciting technologies have provided insight into how current training techniques result in specific muscular adaptations, and may ultimately provide clues for future and novel training methodologies. Greater knowledge of the mechanisms and interaction of exercise-induced adaptive pathways in skeletal muscle is important for our understanding of the aetiology of disease, maintenance of metabolic and functional capacity with aging, and training for athletic performance. This article highlights the effects of exercise on molecular and genetic mechanisms of training adaptation in skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Superficial bladder cancer (SBC) presents a difficult clinical dilemma at diagnosis as only a small subgroup of patients will subsequently develop invasive disease. Study of cancer biology has found that angiogenesis is central to growth and spread. This study examines the relationship between the angiogenic inhibitory factor Thrombospondin-1 (TSP-1) at initial presentation and subsequent progression of SBC. Methods: Using immunohistochemistry, 220 cases of SBC were examined for pattern and extent of expression of TSP-1 at initial presentation. Results: TSP-1 was detected in perivascular tissue, at the epithelial-stromal junction, in the stroma and in tumour cells and reduced perivascular TSP-1 staining at presentation was an independent predictive factor for the subsequent development of muscle invasive or metastatic disease. Conclusion: This adds further weight to the theory that TSP-1 plays a major part in the biology of bladder cancer possibly through the control of angiogenesis. © 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Re-programming of gene expression is fundamental for skeletal muscle adaptations in response to endurance exercise. This study investigated the time-course dependent changes in the muscular transcriptome following an endurance exercise trial consisting of 1 h of intense cycling immediately followed by 1 h of intense running. Skeletal muscle samples were taken at baseline, 3 h, 48 h, and 96 h post-exercise from eight healthy, endurance-trained, male individuals. RNA was extracted from muscle. Differential gene expression was evaluated using Illumina microarrays and validated with qPCR. Gene set enrichment analysis identified enriched molecular signatures chosen from the Molecular Signatures Database. Three h post-exercise, 102 gene sets were up-regulated [family wise error rate (FWER), P < 0.05]; including groups of genes related with leukocyte migration, immune and chaperone activation, and cyclic AMP responsive element binding protein (CREB) 1-signaling. Forty-eight h post-exercise, among 19 enriched gene sets (FWER, P < 0.05), two gene sets related to actin cytoskeleton remodeling were up-regulated. Ninety-six h post-exercise, 83 gene sets were enriched (FWER, P < 0.05), 80 of which were up-regulated; including gene groups related to chemokine signaling, cell stress management, and extracellular matrix remodeling. These data provide comprehensive insights into the molecular pathways involved in acute stress, recovery, and adaptive muscular responses to endurance exercise. The novel 96 h post-exercise transcriptome indicates substantial transcriptional activity, potentially associated with the prolonged presence of leukocytes in the muscles. This suggests that muscular recovery, from a transcriptional perspective, is incomplete 96 h after endurance exercise involving muscle damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metabolism of arachidonic acid through lipoxygenase pathways leads to the generation of various biologically active eicosanoids. The expression of these enzymes vary throughout the progression of various cancers, and thereby they have been shown to regulate aspects of tumor development. Substantial evidence supports a functional role for lipoxygenase-catalyzed arachidonic and linoleic acid metabolism in cancer development. Pharmacologic and natural inhibitors of lipoxygenases have been shown to suppress carcinogenesis and tumor growth in a number of experimental models. Signaling of hydro[peroxy]fatty acids following arachidonic or linoleic acid metabolism potentially effect diverse biological phenomenon regulating processes such as cell growth, cell survival, angiogenesis, cell invasion, metastatic potential and immunomodulation. However, the effects of distinct LOX isoforms differ considerably with respect to their effects on both the individual mechanisms described and the tumor being examined. 5-LOX and platelet type 12-LOX are generally considered pro-carcinogenic, with the role of 15-LOX-1 remaining controversial, while 15-LOX-2 suppresses carcinogenesis. In this review, we focus on the molecular mechanisms regulated by LOX metabolism in some of the major cancers. We discuss the effects of LOXs on tumor cell proliferation, their roles in cell cycle control and cell death induction, effects on angiogenesis, migration and the immune response, as well as the signal transduction pathways involved in these processes. Understanding the molecular mechanisms underlying the anti-tumor effect of specific, or general, LOX inhibitors may lead to the design of biologically and pharmacologically targeted therapeutic strategies inhibiting LOX isoforms and/or their biologically active metabolites, that may ultimately prove useful in the treatment of cancer, either alone or in combination with conventional therapies. © 2007 Springer Science+Business Media, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: Carbonic anhydrase IX (CA IX) expression has been described as an endogenous marker of hypoxia in solid neoplasms. Furthermore, CA IX expression has been associated with an aggressive phenotype and resistance to radiotherapy. We assessed the prognostic significance of CA IX expression in patients with muscle-invasive bladder cancer treated with radiotherapy. Materials and methods: A standard immunohistochemistry technique was used to show CA IX expression in 110 muscle-invasive bladder tumours treated with radiotherapy. Clinicopathological data were obtained from medical case notes. Results: CA IX immunostaining was detected in 89 (∼81%) patients. Staining was predominantly membranous, with areas of concurrent cytoplasmic and nuclear staining and was abundant in luminal and perinecrotic areas. No significant correlation was shown between the overall CA IX status and the initial response to radiotherapy, 5-year bladder cancer-specific survival or the time to local recurrence. Conclusions: The distribution of CA IX expression in paraffin-embedded tissue sections seen in this series is consistent with previous studies in bladder cancer, but does not provide significant prognostic information with respect to the response to radiotherapy at 3 months and disease-specific survival after radical radiotherapy. © 2007 The Royal College of Radiologists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transient leaf assay in Nicotiana benthamiana is widely used in plant sciences, with one application being the rapid assembly of complex multigene pathways that produce new fatty acid profiles. This rapid and facile assay would be further improved if it were possible to simultaneously overexpress transgenes while accurately silencing endogenes. Here, we report a draft genome resource for N. benthamiana spanning over 75% of the 3.1 Gb haploid genome. This resource revealed a two-member NbFAD2 family, NbFAD2.1 and NbFAD2.2, and quantitative RT-PCR (qRT-PCR) confirmed their expression in leaves. FAD2 activities were silenced using hairpin RNAi as monitored by qRT-PCR and biochemical assays. Silencing of endogenous FAD2 activities was combined with overexpression of transgenes via the use of the alternative viral silencing-suppressor protein, V2, from Tomato yellow leaf curl virus. We show that V2 permits maximal overexpression of transgenes but, crucially, also allows hairpin RNAi to operate unimpeded. To illustrate the efficacy of the V2-based leaf assay system, endogenous lipids were shunted from the desaturation of 18:1 to elongation reactions beginning with 18:1 as substrate. These V2-based leaf assays produced ~50% more elongated fatty acid products than p19-based assays. Analyses of small RNA populations generated from hairpin RNAi against NbFAD2 confirm that the siRNA population is dominated by 21 and 22 nt species derived from the hairpin. Collectively, these new tools expand the range of uses and possibilities for metabolic engineering in transient leaf assays. © 2012 Naim et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White light strongly promotes dormancy in freshly harvested cereal grains, whereas dark and after-ripening have the opposite effect. We have analyzed the interaction of light and after-ripening on abscisic acid (ABA) and gibberellin (GA) metabolism genes and dormancy in barley (Hordeum vulgare ‘Betzes’). Analysis of gene expression in imbibed barley grains shows that different ABA metabolism genes are targeted by white light and after-ripening. Of the genes examined, white light promotes the expression of an ABA biosynthetic gene, HvNCED1, in embryos. Consistent with this result, enzyme-linked immunosorbent assays show that dormant grains imbibed under white light have higher embryo ABA content than grains imbibed in the dark. After-ripening has no effect on expression of ABA biosynthesis genes, but promotes expression of an ABA catabolism gene (HvABA8′OH1), a GA biosynthetic gene (HvGA3ox2), and a GA catabolic gene (HvGA2ox3) following imbibition. Blue light mimics the effects of white light on germination, ABA levels, and expression of GA and ABA metabolism genes. Red and far-red light have no effect on germination, ABA levels, or HvNCED1. RNA interference experiments in transgenic barley plants support a role of HvABA8′OH1 in dormancy release. Reduced HvABA8′OH1 expression in transgenic HvABA8′OH1 RNAi grains results in higher levels of ABA and increased dormancy compared to nontransgenic grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Diabetic peripheral neuropathy is an important cause of foot ulceration and limb loss. This systematic review and meta-analysis investigated the effect of diabetic peripheral neuropathy on gait, dynamic electromyography and dynamic plantar pressures. Methods: Electronic databases were searched systematically for articles reporting the effect of diabetic peripheral neuropathy on gait, dynamic electromyography and plantar pressures. Searches were restricted to articles published between January 2000 and April 2012. Outcome measures assessed included spatiotemporal parameters, lower limb kinematics, kinetics, muscle activation and plantar pressure. Meta-analyses were carried out on all outcome measures reported by ≥3 studies. Findings: Sixteen studies were included consisting of 382 neuropathy participants, 216 diabetes controls without neuropathy and 207 healthy controls. Meta-analysis was performed on 11 gait variables. A high level of heterogeneity was noted between studies. Meta-analysis results suggested a longer stance time and moderately higher plantar pressures in diabetic peripheral neuropathy patients at the rearfoot, midfoot and forefoot compared to controls. Systematic review of studies suggested potential differences in the biomechanical characteristics (kinematics, kinetics, EMG) of diabetic neuropathy patients. However these findings were inconsistent and limited by small sample sizes.; Interpretation: Current evidence suggests that patients with diabetic peripheral neuropathy have elevated plantar pressures and occupy a longer duration of time in the stance-phase during gait. Firm conclusions are hampered by the heterogeneity and small sample sizes of available studies. Interpretation: Current evidence suggests that patients with diabetic peripheral neuropathy have elevated plantar pressures and occupy a longer duration of time in the stance-phase during gait. Firm conclusions are hampered by the heterogeneity and small sample sizes of available studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anticonvulsant phenytoin (5,5-diphenylhydantoin) provokes a skin rash in 5 to 10% of patients, which heralds the start of an idiosyncratic reaction that may result from covalent modification of normal self proteins by reactive drug metabolites. Phenytoin is metabolized by cytochrome P450 (P450) enzymes primarily to 5-(p-hydroxyphenyl-),5-phenylhydantoin (HPPH), which may be further metabolized to a catechol that spontaneously oxidizes to semiquinone and quinone species that covalently modify proteins. The aim of this study was to determine which P450s catalyze HPPH metabolism to the catechol, proposed to be the final enzymatic step in phenytoin bioactivation. Recombinant human P450s were coexpressed with NADPH-cytochrome P450 reductase in Escherichia coli. Novel bicistronic expression vectors were constructed for P450 2C19 and the three major variants of P450 2C9, i.e., 2C9*1, 2C9*2, and 2C9*3. HPPH metabolism and covalent adduct formation were assessed in parallel. P450 2C19 was the most effective catalyst of HPPH oxidation to the catechol metabolite and was also associated with the highest levels of covalent adduct formation. P450 3A4, 3A5, 3A7, 2C9*1, and 2C9*2 also catalyzed bioactivation of HPPH, but to a lesser extent. Fluorographic analysis showed that the major targets of adduct formation in bacterial membranes were the catalytic P450 forms, as suggested from experiments with human liver microsomes. These results suggest that P450 2C19 and other forms from the 2C and 3A subfamilies may be targets as well as catalysts of drug-protein adduct formation from phenytoin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Burn injury is associated with disabling scar formation which impacts on many aspects of the patient's life. Previously we have shown that the fetus heals a deep dermal burn in a scarless fashion. Amniotic membrane (AM) is the outermost fetal tisue and has beeen used as a dressing in thermal injuries, though there is little data to support this use. To assess the efficacy of AM in scar minimisation after deep dermal burn wound, we conducted a randomised controlled study in the 1-month lamb. Lambs were delivered by caesarian section and the amniotic membranes stored after which lambs were returned to their mothers post-operatively. At 1 month, a standardised deep dermal burn was created under general anaesthesia on both flanks of the lamb. One flank was covered with unmatched AM, the other with paraffin gauze. Animals were sequentially euthanased from Day 3-60 after injury and tissue analysed for histopathology and immunohistochemically for alpha-smooth muscle actin (alphaSMA) content. AM resulted in reduced scar tissue as assessed histopathologically and reduced alphaSMA content. This study provides the first laboratory evidence that AM may reduce scar formation after burn injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early to mid-term fetuses heal cutaneous incisional wounds without scars; however, fetal response to burn injury has not been ascertained. We present a fetal model of thermal injury and subsequent analysis of fetal and lamb response to burn injury. A reproducible deep dermal burn injury was created in the fetus by application of water at 66 degrees C for 7 seconds, and at 82 degrees C for 10 seconds to the lamb. Macroscopically, the area of fetal scald was undetectable from day 7 post injury, while all lamb scalds were readily identified and eventually healed with scarring. Using a five-point histopathology scoring system for alteration in tissue morphology, differences were detected between control and scalded skin at all stages in lamb postburn, but no difference was detected in the fetal model after day 7. There were also large differences in content of alpha-smooth muscle actin and transforming growth factor-beta1 between control and scalded lamb and these differences were statistically significant at day 14 (P < 0.01). This novel model of fetal and lamb response to deep dermal injury indicates that the fetus heals a deep burn injury in a scarless fashion. Further elucidation of this specific fetal process of burn injury repair may lead to improved outcome for patients with burn injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To investigate the relationship between two assessments to quantify delayed onset muscle soreness [DOMS]: visual analog scale [VAS] and pressure pain threshold [PPT]. Methods: Thirty-one healthy young men [25.8 ± 5.5 years] performed 10 sets of six maximal eccentric contractions of the elbow flexors with their non-dominant arm. Before and one to four days after the exercise, muscle pain perceived upon palpation of the biceps brachii at three sites [5, 9 and 13 cm above the elbow crease] was assessed by VAS with a 100 mm line [0 = no pain, 100 = extremely painful], and PPT of the same sites was determined by an algometer. Changes in VAS and PPT over time were compared amongst three sites by a two-way repeated measures analysis of variance, and the relationship between VAS and PPT was analyzed using a Pearson product-moment correlation. Results: The VAS increased one to four days after exercise and peaked two days post-exercise, while the PPT decreased most one day post-exercise and remained below baseline for four days following exercise [p < 0.05]. No significant difference among the three sites was found for VAS [p = 0.62] or PPT [p = 0.45]. The magnitude of change in VAS did not significantly correlate with that of PPT [r = −0.20, p = 0.28]. Conclusion: These results suggest that the level of muscle pain is not region-specific, at least among the three sites investigated in the study, and VAS and PPT provide different information about DOMS, indicating that VAS and PPT represent different aspects of pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogen receptor (ER)-β has been shown to possess a tumor suppressive effect, and is a potential target for cancer therapy. Using gene-expression meta-analysis of human malignant pleural mesothelioma, we identified an ESR2 (ERβ coding gene) signature. High ESR2 expression was strongly associated with low succinate dehydrogenase B (SDHB) (which encodes a mitochondrial respiratory chain complex II subunit) expression. We demonstrate that SDHB loss induced ESR2 expression, and that activated ERβ, by over-expression or by selective agonist stimulation, negatively affected oxidative phosphorylation compromising mitochondrial complex II and IV activity. This resulted in reduced mitochondrial ATP production, increased glycolysis dependence and impaired cell proliferation. The observed in vitro effects were phenocopied in vivo using a selective ERβ agonist in a mesothelioma mouse model. On the whole, our data highlight an unforeseen interaction between ERβ-mediated tumor suppression and energy metabolism that may be exploited to improve on the therapy for clinical management of malignant mesothelioma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aging is associated with increased circulating pro-inflammatory and lower anti-inflammatory cytokines. Exercise training, in addition to improving muscle function, reduces these circulating pro-inflammatory cytokines. Yet, few studies have evaluated changes in the expression of cytokines within skeletal muscle after exercise training. The aim of the current study was to examine the expression of cytokines both at rest and following a bout of isokinetic exercise performed before and after 12 weeks of resistance exercise training in young (n = 8, 20.3 ± 0.8 yr) and elderly men (n = 8, 66.9 ± 1.6 yr). Protein expression of various cytokines was determined in muscle homogenates. The expression of MCP-1, IL-8 and IL-6 (which are traditionally classified as ‘pro-inflammatory’) increased substantially after acute exercise. By contrast, the expression of the anti-inflammatory cytokines IL-4, IL-10 and IL-13 increased only slightly (or not at all) after acute exercise. These responses were not significantly different between young and elderly men, either before or after 12 weeks of exercise training. However, compared with the young men, the expression of pro-inflammatory cytokines 2 h post exercise tended to be greater in the elderly men prior to training. Training attenuated this difference. These data suggest that the inflammatory response to unaccustomed exercise increases with age. Furthermore, regular exercise training may help to normalize this inflammatory response, which could have important implications for muscle regeneration and adaptation in the elderly.