318 resultados para MPI
Resumo:
This paper focuses on the parallelization of an ocean model applying current multicore processor-based cluster architectures to an irregular computational mesh. The aim is to maximize the efficiency of the computational resources used. To make the best use of the resources offered by these architectures, this parallelization has been addressed at all the hardware levels of modern supercomputers: firstly, exploiting the internal parallelism of the CPU through vectorization; secondly, taking advantage of the multiple cores of each node using OpenMP; and finally, using the cluster nodes to distribute the computational mesh, using MPI for communication within the nodes. The speedup obtained with each parallelization technique as well as the combined overall speedup have been measured for the western Mediterranean Sea for different cluster configurations, achieving a speedup factor of 73.3 using 256 processors. The results also show the efficiency achieved in the different cluster nodes and the advantages obtained by combining OpenMP and MPI versus using only OpenMP or MPI. Finally, the scalability of the model has been analysed by examining computation and communication times as well as the communication and synchronization overhead due to parallelization.
Resumo:
In this paper, parallel Relaxed and Extrapolated algorithms based on the Power method for accelerating the PageRank computation are presented. Different parallel implementations of the Power method and the proposed variants are analyzed using different data distribution strategies. The reported experiments show the behavior and effectiveness of the designed algorithms for realistic test data using either OpenMP, MPI or an hybrid OpenMP/MPI approach to exploit the benefits of shared memory inside the nodes of current SMP supercomputers.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Although crisp data are fundamentally indispensable for determining the profit Malmquist productivity index (MPI), the observed values in real-world problems are often imprecise or vague. These imprecise or vague data can be suitably characterized with fuzzy and interval methods. In this paper, we reformulate the conventional profit MPI problem as an imprecise data envelopment analysis (DEA) problem, and propose two novel methods for measuring the overall profit MPI when the inputs, outputs, and price vectors are fuzzy or vary in intervals. We develop a fuzzy version of the conventional MPI model by using a ranking method, and solve the model with a commercial off-the-shelf DEA software package. In addition, we define an interval for the overall profit MPI of each decision-making unit (DMU) and divide the DMUs into six groups according to the intervals obtained for their overall profit efficiency and MPIs. We also present two numerical examples to demonstrate the applicability of the two proposed models and exhibit the efficacy of the procedures and algorithms. © 2011 Elsevier Ltd.
Resumo:
Health care organizations must continuously improve their productivity to sustain long-term growth and profitability. Sustainable productivity performance is mostly assumed to be a natural outcome of successful health care management. Data envelopment analysis (DEA) is a popular mathematical programming method for comparing the inputs and outputs of a set of homogenous decision making units (DMUs) by evaluating their relative efficiency. The Malmquist productivity index (MPI) is widely used for productivity analysis by relying on constructing a best practice frontier and calculating the relative performance of a DMU for different time periods. The conventional DEA requires accurate and crisp data to calculate the MPI. However, the real-world data are often imprecise and vague. In this study, the authors propose a novel productivity measurement approach in fuzzy environments with MPI. An application of the proposed approach in health care is presented to demonstrate the simplicity and efficacy of the procedures and algorithms in a hospital efficiency study conducted for a State Office of Inspector General in the United States. © 2012, IGI Global.