989 resultados para MODULATION SPECTRUM
Resumo:
Laser micro-Raman spectroscopic measurements were done on the amorphous conducting carbon films obtained from maleic anhydride by pyrolysis process. We have found a predominant broad peak around 1140 cm(-1), in addition to the normally observed peaks in amorphous carbons around 1350 and 1600 cm(-1), and peak of medium intensity around 800 cm(-1). Here we discuss the possibility of conjugated polymer like bond alternating structure which can give rise to these unusual Raman features. (C) 1997 American Institute of Physics.
Resumo:
The technique of space vector pulsewidth modulation (SVM) is reviewed. The basic principle of SVM is derived and is compared with sine-triangle PWM. Operation in the overmodulation range is explained. Extension of SVM to other inverter-motor combinations such as three level inverters and split phase motors are discussed.
Resumo:
Triplet lifetimes have been determined for the diastereomers of a broad set of butane-l,4-dione derivatives (1-3). A remarkable dependence of lifetimes on conformational preferences is revealed in that the lifetimes are shorter for the meso diastereomers of 1-3 than those for the racemic ones. The intramolecular beta-phenyl quenching is promoted in the case of meso diastereomers by virtue of the gauche relationship between the excited carbonyl group and the beta-aryl ring, while a distal arrangement in the lowest energy conformation (H-anti) in racemic diastereomers prevents such a deactivation. The involvement of charge transfer in the intramolecular beta-phenyl quenching is suggested by the correlation of the triplet lifetimes of the meso diastereomers of compounds 2 with the nature of the substituent on the beta-phenyl rings. In the case of racemic diastereomers, beta-methoxy substitution on the beta-phenyl ring (2-OCH3, 3-OCH3) also led to a decrease of the triplet lifetimes when compared to those of the nonsubstituted compounds (2-H, 3-H). This shortening is accounted for by the deactivation of a small proportion of the excited molecules through beta-phenyl quenching. In addition to the above factors, the lifetimes in the case of meso diastereomers can further be controlled by increasing the energy spacing between the T-1 and T-2 states, since beta-phenyl quenching occurs from the latter for compounds 2 and 3. Through a rational conformational control, a surprisingly long triplet lifetime (300 ns) has been measured for the first time for a purely n,pi* triplet-excited beta-phenylpropiophenone dimer (1-rac).
Resumo:
This paper considers the problem of spectrum sensing in cognitive radio networks when the primary user is using Orthogonal Frequency Division Multiplexing (OFDM). For this we develop cooperative sequential detection algorithms that use the autocorrelation property of cyclic prefix (CP) used in OFDM systems. We study the effect of timing and frequency offset, IQ-imbalance and uncertainty in noise and transmit power. We also modify the detector to mitigate the effects of these impairments. The performance of the proposed algorithms is studied via simulations. We show that sequential detection can significantly improve the performance over a fixed sample size detector.
Resumo:
Two new classes of mono- and bis-D-pi-A cryptand derivatives with a flexible and a rigid cryptand core have been synthesized. The linear and nonlinear optical properties of these molecules are probed. The three dimensional cavity of the cryptand moiety has been utilized to modulate the SHG intensity to different extents in solution with metal ion inputs such as Ni-II,Cu-II,Zn-II, and Cd-II. We also report that decomplexation events can be used to reversibly modulate their NLO responses.
Resumo:
The temperature and power dependence of Fermi-edge singularity (FES) in high-density two-dimensional electron gas, specific to pseudomorphic AlxGa1-xAs/InyGa1-yAs/GaAs heterostructures is studied by photoluminescence (PL). In all these structures, there are two prominent transitions E11 and E21 considered to be the result of electron-hole recombination from first and second electron sub-bands with that of first heavy-hole sub-band. FES is observed approximately 5 -10 meV below the E21 transition. At 4.2 K, FES appears as a lower energy shoulder to the E21 transition. The PL intensity of all the three transitions E11, FES and E21 grows linearly with excitation power. However, we observe anomalous behavior of FES with temperature. While PL intensity of E11 and E21 decrease with increasing temperature, FES transition becomes stronger initially and then quenches-off slowly (till 40K). Though it appears as a distinct peak at about 20 K, its maximum is around 7 - 13 K.
Resumo:
We consider a framework in which several service providers offer downlink wireless data access service in a certain area. Each provider serves its end-users through opportunistic secondary spectrum access of licensed spectrum, and needs to pay primary license holders of the spectrum usage based and membership based charges for such secondary spectrum access. In these circumstances, if providers pool their resources and allow end-users to be served by any of the cooperating providers, the total user satisfaction as well as the aggregate revenue earned by providers may increase. We use coalitional game theory to investigate such cooperation among providers, and show that the optimal cooperation schemes can be obtained as solutions of convex optimizations. We next show that under usage based charging scheme, if all providers cooperate, there always exists an operating point that maximizes the aggregate revenue of providers, while presenting each provider a share of the revenue such that no subset of providers has an incentive to leave the coalition. Furthermore, such an operating point can be computed in polynomial time. Finally, we show that when the charging scheme involves membership based charges, the above result holds in important special cases.
Resumo:
We consider a setting in which several operators offer downlink wireless data access services in a certain geographical region. Each operator deploys several base stations or access points, and registers some subscribers. In such a situation, if operators pool their infrastructure, and permit the possibility of subscribers being served by any of the cooperating operators, then there can be overall better user satisfaction, and increased operator revenue. We use coalitional game theory to investigate such resource pooling and cooperation between operators.We use utility functions to model user satisfaction, and show that the resulting coalitional game has the property that if all operators cooperate (i.e., form a grand coalition) then there is an operating point that maximizes the sum utility over the operators while providing the operators revenues such that no subset of operators has an incentive to break away from the coalition. We investigate whether such operating points can result in utility unfairness between users of the various operators. We also study other revenue sharing concepts, namely, the nucleolus and the Shapely value. Such investigations throw light on criteria for operators to accept or reject subscribers, based on the service level agreements proposed by them. We also investigate the situation in which only certain subsets of operators may be willing to cooperate.
Resumo:
Rotational spectra of C(6)H(5)CCH center dot center dot center dot H(2)S, C(6)H(5)CCH center dot center dot center dot H(2)(34)S, C(6)H(5)CCH center dot center dot center dot HDS, C(6)H(5)CCH center dot center dot center dot D(2)S and C(6) H(5)CCD center dot center dot center dot H(2)S complexes have been observed using a pulsed nozzle Fourier transform microwave spectrometer. The observed spectrum is consistent with a structure in which hydrogen sulfide is located over the phenyl ring pi cloud and the distance between the centers of masses of the two monomers is 3.74 +/- 0.01 angstrom. In the complex, the H(2)S unit is shifted from the phenyl ring center towards the acetylene group. The vibrationally averaged structure has an effective Cs symmetry. Ab initio calculations were performed at MP2/aug-cc-pVDZ level of theory to locate the possible geometries of the complex. The calculations reveal the experimentally observed structure to be more stable than a coplanar arrangement of the monomers, which was observed for the C(6)H(5)CCH center dot center dot center dot H(2)O complex. Atoms in molecule theoretical analysis shows the presence of S-H center dot center dot center dot pi hydrogen bond. For the parent isotopologue, each transition frequency was found to split into two resulting from an interchange of the equivalent hydrogens of H(2)S unit in the complex. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A current error space phasor based simple hysteresis controller is proposed in this paper to control the switching frequency variation in two-level pulsewidth-modulation (PWM) inverter-fed induction motor (IM) drives. A parabolic boundary for the current error space phasor is suggested for the first time to obtain the switching frequency spectrum for output voltage with hysteresis controller similar to the constant switching frequency voltage-controlled space vector PWM-based IM drive. A novel concept of online variation of this parabolic boundary, which depends on the operating speed of motor, is presented. A generalized technique that determines the set of unique parabolic boundaries for a two-level inverter feeding any given induction motor is described. The sector change logic is self-adaptive and is capable of taking the drive up to the six-step mode if needed. Steady-state and transient performance of proposed controller is experimentally verified on a 3.7-kW IM drive in the entire speed range. Close resemblance of the simulation and experimental results is shown.
Resumo:
In phase-encoded optical CDMA (OCDMA) spreading is achieved by encoding the phase of signal spectrum. Here, a mathematical model for the output signal of a phase-encoded OCDMA system is first derived. This is shown to lead to a performance metric for the design of spreading sequences for asynchronous transmission. Generalized bent functions are used to construct a family of efficient phase-encoding sequences. It is shown how M-ary modulation of these spreading sequences is possible. The problem of designing efficient phaseencoded sequences is then related to the problem of minimizing PMEPR (peak-to-mean envelope power ratio) in an OFDM communication system.
Resumo:
Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzymes are regulated by several mechanisms which include variation in the catalytic turnover rate based on redox stimuli, subcellular localization or protein-protein interactions. In the case of Receptor Protein Tyrosine Phosphatases (RPTPs) containing two PTP domains, phosphatase activity is localized in their membrane-proximal (D1) domains, while the membrane-distal (D2) domain is believed to play a modulatory role. Here we report our analysis of the influence of the D2 domain on the catalytic activity and substrate specificity of the D1 domain using two Drosophila melanogaster RPTPs as a model system. Biochemical studies reveal contrasting roles for the D2 domain of Drosophila Leukocyte antigen Related (DLAR) and Protein Tyrosine Phosphatase on Drosophila chromosome band 99A (PTP99A). While D2 lowers the catalytic activity of the D1 domain in DLAR, the D2 domain of PTP99A leads to an increase in the catalytic activity of its D1 domain. Substrate specificity, on the other hand, is cumulative, whereby the individual specificities of the D1 and D2 domains contribute to the substrate specificity of these two-domain enzymes. Molecular dynamics simulations on structural models of DLAR and PTP99A reveal a conformational rationale for the experimental observations. These studies reveal that concerted structural changes mediate inter-domain communication resulting in either inhibitory or activating effects of the membrane distal PTP domain on the catalytic activity of the membrane proximal PTP domain.