985 resultados para MINERALIZATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Puziwan gold deposit is located at the northern boundary of the North China platform where there are very favorable ore-forming conditions. The deposit is a medium-sized gold deposit associated with silver and copper polymetallic minerallization which were closely related to cryptoexplosive processes and fluidization and underwent multi-epoch superposition of mineralization. The mineralization consists of cryptoexplosive breccia-type, fluidizing-type, porphyry-type, quartz vein-type, etc. The ore-controlling law of ore-bearing brecciated zone is systematically studied in the paper. The shape, scale and attitude of ore bodies are dominat in the upper, the ore bodies of fluidizing breccia-type are dominant in the upper and the middle part, the porphyry-type ore bodies are dominant in the bottom. The quartz vein-type ore bodies are impenetrated in all the brecciated zone. The metallogenic epoch of Puziwan gold deposit is collated and stipulated. The Rb-Sr isochron age of quartz porphyry (wall rock) is 233 Ma, refering to the Ar-Ar age of gold-bearing quartz, excluded the former conclusion that the so-called metallogenic epoch (245.9Ma) is in Indosinian epoch. The nonage metallogenic age of Buziwan gold deposit shoule be in the Yanshanian epoch (142.5Ma). By applying the sub-specimen sampling technique, the Rb-Sr isochron age of gold-bearing pyrites in late mineralization epoch is dated to be 64 Ma. In conclusion, the metallogenetic epoch of Puziwan gold deposit is in late Yanshanian-early Himalayan epoch. On the above basis, the metallogenic model of the "train type" and new texture model of ore deposit are established. by applying the methods of geology, shallow seismic exploration, remote sensing, partial geochemical extraction and the study of inclusions in the late granite porphyry, the author has made the metallogenic progosis in the depth and the prephery of Puziwan gold deposit and eight prospecting targets are proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The East Shandong gold province is located on the southeastern margin of the North China Craton and features uplift in the north and depression in the south. The uplift area is made up of the Archaean Jiaodong Group, the Proterozoic Jingshan Group and Yanshannian granites. Most gold deposits in the uplift area are spatially associated with the Yanshannian granites. Two types of gold mineralization occur in the region: the quartz-vein type hosted in the Linglong granite suite, and the shear zone type hosted by either the Linglong granite or Guojialing granitoid suites. The mineralization ages are 113~126 Ma. The southern part of East Shandong contains the Mesozoic Jiaolai basin, which formed during regional extension. The basin is bounded by the Wulian-Rongcheng fault in the southeast and the Tanlu fault in the west. The Pengjiakuang, Fayunkuang and Dazhuangzi gold deposit occurs on the northeastern margin of the basin. The mineralization ages of these deposits are 110~128 Ma. This paper focuses on a low-angle detachment fault developed between the Proterozoic Jingshan Group metamorphic complex and the northeastern margin of the basin. Our field work shows that the distribution of the Pengjiakuang gold deposit was controlled by the detachment fault. Moreover, the Fayunkuang, Guocheng and Liaoshang gold deposits also occurr in the periphery of the basin, and their features are similar to Pengjiakuang gold deposit. The study of geological geochemistry of the gold deposits has shown: ①three-type gold deposit was situated in the Jiaodong area, including altered rock type (Jiaojia type), quartz vein type (Linglong type) and breccia type (Pengjiakuang type); the ore-forming materials and fluid for Pengjiakuang type gold deposit shows multiple source; ②the ore materials of Jiaojia and Linglong type deposits are mainly from deep source. The author has studied geological-geochemical dynamics of three types deposits in Jiaodong area. The study of tectonic dynamics shows that ore-forming structure differential stress values of Pengjiakuang gold deposit is 100 * 10~6~130 * 10~6 Pa, and that of Jiaojia gold deposit is 100 * 10~5~194 * 10~6 Pa. Dynamics of hydrothermal ore-forming fluid has also been studied in this paper. Author applies Bernoulli equation to dynamic model of hydrothermal fluid motion in brittle fracture and cracks (quartz vein type gold mineralization), and applies Darcy law to dynamic model of hydro thermal fluid motion in porous medium (altered rock type gold mineralization). Author does daring try in order to study quantitativly transport mechanism of hydrothermal ore-forming fluid in this paper. The study of fluid inclusions and crystal dynamics shows that reaction system of hydrothermal ore-forming includes three types, as follows: ore-forming reaction, controlling reaction and buffer controlling reaction. They depend on each other, controlling each other, which form a organic system. Further research shown that formation of ore shoots was controlled by coincidence processes of tectonic dynamic condition and thermodynamic evolution. This paper has summaried reginoal metallogenic laws and seted up metallogenic(dynamics) models for Jiaodong gold ore belt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muanggang-Dajing area located in the south end of Dahinggan Mts is the only discovered tin-polymetallic minerzalization belt and the only tectonic magmaism zone with middle-upper grade tin-ore deposites in North China. Tin mineralization in this area is believed tn related to Yanshannian granites which is different from those in South China tin belt. Through geochemical study of these granites on the base of fieldworks , thin section observation, major and trace elements as well as isotopic composision determination, the isochronic sequence and petrogenetic series for the granites have been determined. Hi light ing on the petrogenesis of earlier Yanshannian of MOmarh granites, two groups granites with different Neodymium isotopic features have been distinguished. Both belonging to hi-K calc-alkalinic series, their nature of source rocks and.magma processing were restricted, we argue for that the two groups have get the isotopic differences from their sources-middle and later proterozoic juvenial crustal via mantle underplating. From then on , there is a pre-enrichment of tin in this area. The partial melting from a F rich soruses can dissolve and carry more tin from the same some due to the de-connection of melt, which supply the mineralization fluids after a thoroughly evolement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studied the metallotectonics, altered rocks, altered minerals and fluid inclusions. The conclusions are: (1)The gold deposits in Jiaodong district were formed quickly uplifted tectonic setting which was induced by the Mantle doming in Mesozoic era. (2)Both Jiaojia-type and Linglong-type gold mineralizations were formed in the same tectonic-fluid system. (3) The Ar-Ar age of the earlier stage of the gold mineralization is 114~116Ma. (4)The development of the plaiting ore-control tectonic system underwent four stagesrcounterclockwise ductile compresso-shearing, clockwise brittle tenso-shearing and counterclockwise brittle compresso-shearing and brittle normal faulting after mineralization. (5)The mineralization has five stages: quartz and k-feldspar stage, quartz and ferro-carbonate and pyrite stage, quartz and chalcopyrite stage, pyrite and sericite and quartz stage and carbonate stage, and they make up four ore-types: red ore, vein ore, mottled ore and grey ore. (6) The features of mineralizations and ore-forming fluids in different stages are different. But the ore-forming fluids are rich in Si, Fe, P_2O_5, H_2O, CO_2, SO_4~(2-), K~+, Na~+, Ca~(2+) and Cl~- in general and their salinities are from 4 to 18 NaClwt%. (7) The ore-forming fluids came mainly from the Mantle in early stage, then mainly from magma, and mainly from meteoric water in the last stage. (8) Au in the ore-forming fluid was mainly carried in the form of complex of Au and S. (9)The temperature of ore-forming fluid is from 350℃ to 120℃and its pressure is from 20MPa to 38MPa. (10)The gold vein composed by quartz, ferro-carbonate, chalcopyrite and pyrite (vein ore) was filled in the tensional fracture in the top of the magma dome. The disseminated ore bodies composed by pyrite, sericite and quartz (grey ore) was metasomatized in the shearing fault which developed along the contact zone between Linglong intrusive body and Jiaodong Group, which is placed in the flank top of magma dome. In the joint and fracture induced by the shearing fault which developed along the contact zone between Linglong intrusive body and Jiaodong Group, veiniet and stockwork ore (red ore) and veinlet-disseminated ore (mottled ore) composed by quartz and pyrite was formed. (ll)Fluid boiling maybe one of the form of the ore-forming substances precipitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples from carbonate wall-rocks, skarn, ore of skarn type, later calcite vein, and ore of porphyry type in Shouwangfen copper deposit district were collected. Systematic study was carried out on carbon, oxygen, rubidium, strontium and sulfur isotope compositions of carbonates and sulfides in these samples. The first Isochron dating by the Rb-Sr isotopes in chalcopyrite of ore sub-sample was done as well. The following conclusions were obtained. The age (113.6±4.3Ma), obtained by Rb-Sr isotope isochron dating of chalcopyrite and pyrite from sub-sample of skarn ores, probably represents the true mineralization age of skarn ores. That demonstrates the genetic relationship between granodiorite in Shouwangfen complex and skarn copper ores. On the other hand, the Rb-Sr isochron age (73±15Ma) of chalcopyrite from porphyry ores is a little incredible because of bad synthesizing evaluation. But combined with other age data of igneous rocks, it implies the possibility of hydrothermal mineralization in connection with magma activity during the fourth period of Yanshanian in Hebei Province, even in the whole northern edge of Huabei continental block. Together from structure analysis of sulfide sub-samples, from pretreating preccedure of Rb-Sr isotope isochron and its' valuating, we found out that Rb-Sr isotope isochron of sulfide sub-samples is influenced by the crystal structure of sulfides. That is, sulfide ores with very big crystals are not suitable for sub-sample isochron. Carbon, oxygen, sulfur and strontium compositions, of different minerals in these two kinds of ores, imply that the ore-forming hydrothermal fluids were probably derived from magma deep under the crust. The calcite ~(87)Sr/~(86)Sr ratios from the porphyry are consistent to the initial 87Sr/86Sr ratio of the Rb-Sr isochron of chalcopyrite and pyrite in the skarn ore, indicating that these two kinds of ores have the same source characteristic, although the porphyry deposit was formed probably 40 million years later than the skarn one according to our dating results. Skarn and skarn ores are usually considered as interaction product between carbonate wall-rocks and magmatic fluids, but the carbon of the sedimentary carbonate seems not involved in the skarn ores. Considering the connection of magmatic processes and hydrothermal ore formation in the Shouwangfen district, particularly, the spatial distribution of skarn-type and porphyry-type ores, it is possible that the Shouwangfen ore district corresponds to a hydrothermal ore-forming system, which was promoted by high-intruding magmatic rocks. Systematic stable isotopic research can help to reveal the upper part of this hydrothermal ore-forming system, which mainly related to heated and circulating meteoric water, and the lower part principally related to ascending magmatic fluids. Both skarn and porphyry ore-bodies are formed by up-intruding magmatic fluids (even more deep mantle-derived fluids).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Sawuer gold belt is located in the transition belt between Siberian plate and Kazakhstan-Junggar plate. Based on the geological and geochemical studies on the Kuoerzhenkuola and Buerkesidai gold deposits, in Sawuer gold mineralization belt, the time-space structure of mineralization and mineralizing factor are studied, the metallogenic regularity is concluded in thistheses. The ore bodies have the regularity that orebody are of the extensive and compressive in the sallow and depth of volcanic apparatue, respectively, and the vertical extension of orebody is more intensive than the horizontal extension. The gold deposits were controlled by the fractures of volcanic apparatus and regional faults, and featured by the hydrothermal alteration and metasomatism type disseminated mineralization and filling type vein mineralization. By virtue of the geological and geochemical studies on the two deposits that the formation of the two deposits are significantly related to the volcanic activity, we propose new ideas about their origin: (1) the two deposits are located in the same strata, and share the same genesis. (2) both of two deposits are volcanogenic late-stage hydrothermal gold deposits. Based on mapping of volcanic lithofacies and structure for the first time, it is discovered that a volcanic apparatus existed in the study area. Volcanic-intrusive activity can be divided into three cycles and nine lithofacies. where the two deposits are hosted in the same volcanic cycle, in this case, the wall-rock should belong to the same strata. The 40Ar-39Ar age method is employed in this work to analyze the fluid inclusions of quartz in the ore bodies from Kuoerzhenkuola and Buerkesidai gold deposits. The results show that the main mineralization occurred in 332.05 + 2.02-332.59 + 0.5IMa and 335.53 + 0.32Ma~336.78 + 0.50Ma for Kuoerzhenkuola and Buerkesidai gold deposits respectively, indicating that the two deposits are formed almost at the same time, and the metallogenic epoch of the tow deposits are close to those of the hosting rocks formed by volcanic activity of Sawuer gold belt. This geochronological study supplies new evidence for determining the timing of gold mineralization, the geneses of gold deposits? and identifies that in Hercynian period, the Altai developed tectonic-magmatic-hydrothermal mineralization of Early Carboniferous period, except known two metallogenic mineralization periods including tectonic-magmatic-hydrothermal mineralization of Devonian period and Late Carboniferous-Permian period respectively. The study of fluid inclusions indicates that the ore-forming fluid is a type of NaCl-HbO fluid with medium-low temperature and low salinity, Au is transported by the type of auric-sulfur complex (Au (HS)2-), the ore is formed in reduction condition. Hydrogen and oxygen isotopes of fluid inclusions in the major mineralizating stage show that the solutions mainly originated from magmatic water and meteoric water. The fluid mixing and water-rock reaction cause the deposition of Au. The helium and argon isotope compositions of fluid inclusions hosted in pyrite have been measured from Kuoerzhenkuola and Buerkesidai gold deposits in Sawuer gold belt. The results show that the ore-forming fluids of two deposits possessed the same source and is a mixture of mantle- and partial meteoric water-derived fluid, and the reliability of He and Ar isotopic compositions in Hercynian period is discussed. Isotopic studies including H, O, He, C, S, Pb and Sr reveal the same result that the ore-forming fluids of two deposits possessed the same source: the water derived mainly from magmatic water, partially from meteoric water; the mineralizers and ore materials derived mainly from mantle beneath the island arc, and partially from crust. The ore-forming fluids of two deposits are a mixture of mantle-derived fluids being incorporated by crust-derived fluid, and shallow partial meteoric water. Based on these results, it is proposed that the geneses of the two gold deposits are the same, being volcanogenic late-stage hydrothermal gold deposits that the ore-forming fluids filled in fractures of volcanic apparatus and metasomatized the host rocks in the volcanic apparatus. It is the first time we carried out the geophysical exploration, that is, the EH-4 continuous electrical conductivity image system measurement, the results show that relative large-size mineralizing anomalies in underground have been discovered.lt can confirm the law and genesis of the deposits mentioned above, and change the two abandoned mines to current large-size potenial exploration target.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the progress of prospecting, the need for the discovery of blind ore deposits become more and more urgent. To study and find out the method and technology for the discovery of blind and buried ores is now a priority task. New geochemical methods are key technology to discover blind ores. Information of mobile components related to blind ores were extracted using this new methods. These methods were tested and applied based on element' s mobile components migrating and enriched in geophysical-geochemical process. Several kinds of partial extraction techniques have tested based on element' s occurrence in hypergenic zone. Middle-large scale geochemical methods for exploration in forest and swamp have been tested. A serious of methods were tested and applied effetely about evaluation of regional geochemical anomaly, 1:25000 bedrock or soil geochemical methods sampling based on the net in dendritic water system instead of the normal net. 1. Element related with ores can be mobiled to migrate upwards and be absorpted by surface soil. These abnomal components can be concentrated by natural or artificial methods. These trace metalic ions partially exist in dissovlvable ion forms of active state, and partially have been absorbed by Fe-Mn oxide, soil and organic matter in the soil so that a series of reaction such as complex reaction have take place. Employing various partial extraction techniques, metallic ions related with the phase of the blind ores can be extracted, such as the technique of organic complex extraction, Fe-Mn oxide extraction and the extraction technique of metallic ions of various absorption phases. 2.1:200000 regional geochemical evaluation anomaly methods: Advantageous ore-forming areas were selected firstly. Center, concentration, morphological feature, belt of anomaly were choosed then. Geological and geochemical anomalies were combined. And geological and geochemical background information were restrained. Xilekuduke area in Fuyun sheet , Zhaheba area in Qiakuerte sheet, the west-north part in Ertai sheet and Hongshanzui anomaly in Daqiao sheet were selected as target areas, in Alertai, in the north of Xinjiang. in Xilekuduke area, 1:25000 soil geochemical methods sampling based on the net in dendritic water system was carried out. Cu anomaly and copper mineralization were determined in the center area. Au , Cu anomalies and high polarization anomaly were determined in the south part. Prospecting by primary halo and organic complex extraction were used to prognosis blind ore in widely rang outcrop of bedrock. 1:25000 bedrock or soil geochemical methods sampling based on the net in dendritic water system were used in transported overburden outside of mining area. Shallow seismic method and primary halo found a new blind orebody in mining area. A mineralization site was fou and outside of Puziwan gold mine, in the north of Shanxi province. Developing middle-large scale geochemical exploration method is a key technique based 1:200000 regional geochemical exploration. Some conditions were tested as Sampling density , distribution sites of sample, grain size of sample and occurrence of element for exploration. 1:50000 exploration method was advanced to sample clast sediment supplement clast sediment in valley. 1:25000 bedrock or soil geochemical methods sampling based on the net in dendritic water system was applied to sample residual material in A or C horizon. 1:2000 primary or soil halo methods used to check anomalies and determine mineralization. Daliang gold mineralization in the northern Moerdaoga was found appling these methods. Thermomagnetic method was tested in miniqi copper-polymetallic ore. Process methods such as grain size of sample, heated temperature, magnetic separating technique were tested. A suite of Thermomagnetic geochemical method was formed. This method was applied in Xiangshan Cu~Ni deposit which is cover by clast or Gobi in the eastern Xinjiang. Element's content and contrast of anomaly with Thermomagnetic geochemical method were higher than soil anomaly. Susceptibility after samples were heated could be as a assessment conference for anomaly. In some sectors thermo-magnetic Cu, Ni, Ti anomalious were found outside deposits area. There were strong anomal ies response up ore tested by several kind of partial extraction methods include Thermomagnetic, enzyme leach and other partial extractions in Kalatongke Cu-Ni deposit in hungriness area in the northern of Xinjiang. Element's anomalies of meobile were mainly in Fe-Mn oxide and salt. A Copper mineralization site in Xilekuduke anomaly area had been determined. A blind ore was foung by shallow seismic and geochemical method and a mineralization site was found outside this mining area in Puziwan gold deposit in shanxi province. A Gold mineralization site was found by 1:50000 geochemical exploration in Daliang, Inner Mongolia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

REE geochemistry data from the Fanshan alunite deposit indicated that its ore-forming materials came chiefly from the country rocks, with δCe〉0 for alunite ores. According to the differences in δEu, the alunite ores were divided into three types: weak negative Eu anomaly, weak positive Eu anomaly and remarkable positive Eu anomaly. The phenomena of Ce-enrichment in the ores indicated that the Fanshan alunite deposit was formed in an oxidizing environment. Variations in fO2 are corresponding to those in δEu: Eu anomaly varies from negative to positive with increasing fO2. And two other important factors may impact the occurrence of Eu anomalies: the contents of alkaline feldspar and the protolith structure in the mineralization period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Starting with the research status of bio-metallogenesis of Tl deposits and their geology, this work deals with the geological background of Tl enrichment and mineralization and the mechanism of bio- metal-logenesis of Tl deposits, as exemplified by Tl deposits in the low-temperature minerogenetic province. This research on the bio-metallogenesis of Tl deposits is focused on the correlations between bio-enrichment and Tl, the enrichment of Tl in micro-paleo-animals in rocks and ores, bio-fossil casts in Tl-rich ores, the involvement of bio-sulfur in minerogenesis and the enrichment of bio-genetic organic carbon in Tl ores. Thallium deposits have experienced two ore-forming stages: syngenetic bio- en-richment and epigenetic hydrothermal reworking (or transformation). Owing to the intense epigenetic hydrothermal reworking, almost no bio-residues remain in syngenetically bio-enriched Tl ores, thereby the Tl deposits display the characteristics of hydrothermally reoworked deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Xiangshan U deposit, the largest hydrothermal U deposit in China, is hosted in late Jurassic felsic volcanic rocks although the U mineralization post dates the volcanics by at least 20 Ma. The mineralization coincides with intrusion of local mantle-derived mafic dykes formed during Cretaceous crustal extension in South China. Ore-forming fluids are rich in CO2, and U in the fluid is thought to have been dissolved in the form of UO2 (CO3)22− and UO2 (CO3) 34− complexes. This paper provides He and Ar isotope data of fluid inclusions in pyrites and C isotope data of calcites associated with U mineralization (pitchblende) in the Xiangshan U deposit. He isotopic compositions range between 0.1 and 2.0Ra (where Ra is the 3He/4He ratio of air=1.39×10−6) and correlates with 40Ar/36Ar; although there is potential for significant 3He production via 6Li(n,α)3H(β)3He reactions in a U deposit (due to abundant neutrons), nucleogenic production cannot account for either the 3He concentration in these fluids, nor the correlations between He and Ar isotopic compositions. It is more likely that the high 3He/4He ratios represent trapped mantle-derived gases. A mantle origin for the volatiles of Xiangshan is consistent with the δ13C values of calcites, which vary from −3.5‰ to −7.7‰, overlapping the range of mantle CO2. The He, Ar and CO2 characteristics of the ore-forming fluids responsible for the deposit are consistent with mixing between 3He- and CO2-rich mantle-derived fluids and CO2-poor meteoric fluids. These fluids were likely produced during Cretaceous extension and dyke intrusion which permitted mantle-derived CO2 to migrate upward and remobilize U from the acid volcanic source rocks, resulting in the formation of the U deposit. Subsequent decay of U within the fluid inclusions has reduced the 3He/4He ratio, and variations in U/3He result in the range in 3He/4He observed with U/3He ratios in the range 5–17×103 likely corresponding to U concentrations in the fluids b0.2 ppm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

海相沉积磷块岩的成因研究,经历了一百多年的历史,学者先后提出了多种成因假说。但至今,沉积磷块岩的成因仍然是一个有争议的问题,尤其是对于具体的磷矿床,不同学者往往会有重要分歧。 沉积磷块岩之所以存在着多种成因假说之间的争议,存在着成磷机制的重要分歧,相当重要的原因就在于,大量宏观上的有关含磷岩系时空分布规律、沉积盆地岩相古地理景观、矿石微量元素、稀土元素地球化学和同位素地球化学等等研究的同时,缺少对含磷岩系磷酸盐组分内部结构微观上的深入解剖。由于许多磷灰石,不管是生物成因,或者是化学成因,或者是胶体化学成因,它们通常以(超)微细粒集合体的形式产出,偏光显微镜下都呈均质特征。所以,磷块岩成因研究必须引入现代先进的测试分析手段。 本文选择电子探针(EPMA)和分析型电子显微镜(AEM),以织金新华磷矿为研究对象,研究磷酸盐组分的成因类型、各类型磷酸盐组分的微区成分、显微结构、磷酸盐的沉积富集形态及其精细至纳米级的精细结构,在此基础上讨论新华磷矿的成矿机制。 依据电子探针的背散射电子成像、扫描二次电子成像和微区成分分析的研究结果以及分析型电子显微镜的透射电子成像分析、选区电子衍射分析和微区能谱成分分析的研究结果,将织金新华磷块岩的磷酸盐组分划分为下列四种类型:碎屑磷灰石、无定形磷酸盐组分、生物屑磷灰石和球粒状磷酸盐。不同类型的磷酸盐具有不同的(超)显微结构,具有不同的成因过程。这种成因分类,突破了以往磷块岩岩石学研究中将胶磷矿当作新华磷矿磷酸盐唯一的产出形式的局限,是研究其成矿作用的重要基础。 利用分析型电子显微镜对碎屑磷灰石的超显微结构的研究获得氟磷灰石的单晶电子图像。研究结果表明:氟磷灰石晶形完美,呈假六方粒状。单晶大小多为60纳米至160纳米。碎屑磷灰石是氟磷灰石晶体的集合体。集合体内部各晶体的结晶取向杂乱无章,是早期化学结晶形成的氟磷灰石晶体,后期在沉积盆地靠表面的物理吸附形成碎屑团粒,再在成岩过程中遭受挤压形变。 分析型电子显微镜的超显微结构研究得到无定形磷酸盐组分内部残留的生物胞内磷灰石质点的透射电子图像,显示胞内磷灰石质点呈浑圆粒状,大小仅为10纳米左右,代表成矿生物聚磷的最原始形式。 本文研究认为:织金新华磷矿是多种成矿因素综合作用的结果,不同类型的磷酸盐组分具有不同的成因过程: 1.组成碎屑磷灰石的氟磷灰石形成于化学结晶作用,可能与Rodinia超大陆裂解有关的洋底热水作用有关。热水作用为上升洋流提供了溶解态的磷和超微细粒氟磷灰石晶体。在矿区半封闭的沉积环境下,上升洋流携带来的超微细粒氟磷灰石单晶团聚成35微米至300微米的碎屑团粒,经沉淀和成岩期挤压固结形成磷灰石碎屑。 2.无定形磷酸盐组分的形成与生物成磷作用有明显的联系。本文发现,无定形磷酸盐组分主要由生物磷灰石和有机生物残留物组成。海水中磷化的微生物群落沉降到水体底层,实现海水中的溶解态磷向沉积物的迁移固定。在成岩作用早期发生了初步的磷的富集,无定形磷酸盐组分内部形成生物磷灰石集合体,最大约200纳米,最小40纳米,多数约100纳米。它是纳米生物磷灰石的多晶集合体,呈不规则粒状分布于残留干酪根内部;成岩期的磷酸盐化作用直接发生在无定形磷酸盐组分的内部,形成富磷酸盐的微细丝状、网状物,它们就是磷灰石团簇。磷灰石团簇由小于300纳米的不规则磷灰石团块组成,具有纳米微晶结构。成分上,常共生有少量的泥质、硅质和氢氧化铁。 3.生物屑磷灰石直接形成于生物成矿作用,是生物结构的磷酸盐化。 4.球粒状磷酸盐组分内核代表海底沉积的磷质淤泥,成分与微观结构均较为复杂多样,是成矿微生物的聚磷沉积作用和成岩作用早期磷酸盐化的产物,在固结之前经水动力作用抛到海水中成球粒;壳层是在内核处于悬浮状态下在海水中吸附热水化学结晶的(超)微细粒氟磷灰石晶体形成的,具有与碎屑磷灰石相同的成分和结构。 对于织金新华磷矿,化学结晶、物理吸附沉积形成的碎屑磷灰石是最稳定、最基本的成矿方式,但仅形成贫磷矿石。当有生物成磷作用叠加时,矿石才能得到进一步的富集。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

矾山明矾石矿床位于江山-绍兴深断裂南东侧,海西印支褶皱带的南东侧,中国板块东南构造区与太平洋板块的交接处,属于中国板块东南构造区。该矿床产在矾山破火山口内,是一个超大型明矾石矿床,同时矿床中的钒、镓含量也达到了综合利用的品位。该矿床研究程度低,缺少地球化学特征研究。因此,本次工作系统研究了该矿床常量元素、微量元素、稀土元素、硫和铅同位素地球化学特征。本次对明矾石矿床的研究获得以下几点初步认识: 1:成矿物质来源于火山岩。矿区火山岩中的K、Al、Na等矿石元素含量明显比其他地区高,并且从围岩→矿化围岩→矿石呈明显的富集趋势。稀土资料和铅同位素资料也都表明成矿物质来源于中生代火山岩。 2:V、Ga含量达到了综合利用的品位。微量元素资料表明,矿石中V平均含量为211.6ppm,Ga平均含量为16.78ppm,都大于地壳丰度,尤其是V远大于地壳丰度;同时发现,成矿时V以V¬5+形式通过与Al3+发生类质同像进入明矾石晶格,而矿石中Ga含量除与Al3+外还与Fe3+含量有关。 3:明矾石的稀土元素地球化学特征比较复杂。根据δEu值不同可分为三类: Eu弱负异常型,Eu弱正异常型和Eu强正异常型。影响稀土元素分布的因素主要为成矿原岩中富含碱性长石和成矿时的氧逸度和温度,另外矿石结构(如孔隙度)对稀土元素分布也有影响。研究表明,矿石稀土配分模式为轻稀土富集型,与火山岩基本一致。 4:硫同位素研究发现,黄铁矿的δ34S值为1.9~3.2‰,明矾石的δ34S值为13.62~16.02‰,后者明显大于前者。本次研究认为黄铁矿的δ34S值代表当时的岩浆源硫,而明矾石较大的δ34S值为岩浆硫经过同位素分馏的结果。铅同位素研究发现,明矾石矿石的206Pb/204Pb=17.963~18.606,207Pb/204Pb=15.439~15.672,208Pb/204Pb=38.405~38.796。通过与中生代火山岩和基底变质岩的对比,本次研究认为明矾石的铅源为中生代火山岩来源,与基底变质岩并无直接的来源关系。 5:通过明矾石矿床的地球化学特征研究,结合实际地质特征和前人研究成果,本次研究提出了以下矿床成因:明矾石矿床形成环境为浅成低温氧化环境;成矿物质来源于围岩,成矿所需的硫源为分馏的岩浆硫;矿床形成时期为73~95Ma,比围岩晚10~20Ma;矿床成因为火山热液交代成因。 浙江省中生代火山岩成矿体系主要指受浙江省中生代火山构造、岩浆活动控制的一系列不同类型的矿床组合。成矿体系主要受江绍深断裂带和中生代陆相火山岩控制。前人对成矿体系中的单一矿床研究较多,但是缺少横向对比研究。本次工作主要通过对成矿体系中的两类矿床(金属矿床和非金属矿床)进行对比研究,结合中生代火山岩演化过程,初步探索成矿体系中各类矿床间的联系以及成矿体系与火山岩演变的关系。本次工作取得以下几点初步认识: 1:成矿体系中各类矿床的整体分布受江绍深断裂、温州-镇海大断裂等一些深大断裂控制。各矿床的具体控(容)矿构造都为次级压-压扭性断裂和破火山口构造,其中破火山口构造在成矿过程中占非常重要的作用。 2:成矿体系中各类矿床的成矿温度低,深度浅,为典型的浅成低温矿床。 3:铅同位素资料表明,矿床的铅源为中生代火山岩来源,与基底并无直接联系。氢氧同位素资料表明,各类矿床的成矿流体以中生代大气降水为主,岩浆水占很少部分或并无参与成矿。 4:成矿体系存在明显的成矿成岩时差,金属矿床在12.44~45.6Ma,萤石矿床为25~75Ma,其他非金属矿床为10~20Ma;铅锌(银)金等金属矿床为具有明显的两期成矿特征。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

在前人对热带亚热带季风型气候条件下云南个旧砂矿、老挝Xaymomboun特区Ban Nameung铜多金属矿和Champasak省Boloven高原玄武岩等研究成果基础上,采用典型表生矿床实证解剖思路,选择个旧白云岩风化剖面、锡铅砂矿、锰结核、砂矿重选流程、Ban Nameung硫化氧化矿和Boloven玄武岩风化壳等对象,通过岩矿鉴定、主量微量元素地球化学、稀土元素地球化学、人工重砂、化学物相和微区分析等研究手段,研究这些矿床表生成矿物质来源、成矿机理、矿床地球化学特征和矿物工业可利用性等内容,并探索热带亚热带季风型气候条件下典型矿床表生成矿三个问题:(1)Sn、Pb、Mn、Ag、REE、Nb、Ta、Ga和Cd等元素表生富集成矿(矿化)规律;(2)上述元素成矿机理和工业利用可能性;(3)典型矿床其他20几种元素表生贫化与富集规律。研究获得如下主要认识: 1. 个旧地区燕山期以来持续抬升和亚热带季雨林的表生环境,使个旧地区大面积出露的碳酸盐岩风化形成强烈岩溶地貌,碳酸盐岩风化过程中CaO和MgO大量淋失,为砂矿提供了巨大容矿空间,同时碳酸盐地区碱性环境有利于原生硫化矿分解。含矿或不含矿白云岩、花岗岩、玄武岩、夕卡岩和原生硫化矿石等风化形成粘土矿物和铁锰氧化物,释放出Sn、Pb、Mn、Ga、Cd、Ag、In、Cu和Zn等元素,难风化重矿物如锡石表生残留富集,而粘土矿物和铁锰氧化物对成矿元素吸附是砂矿表生成因机理之一。 2. 个旧地区岩溶型砂矿形成机理为:(1)原生重矿物残留富集成矿,如锡石、磁铁矿。(2)金属硫化物残留成矿,如砂矿中残存大量方铅矿、黄铜矿、黄铁矿,是原生硫化物残留结果。(3)表生矿物富集成矿,如白铅矿、孔雀石、自然铅和自然铜等富集。(4)铁锰氧化物吸附和包裹成矿,如铁锰氧化物吸附Pb和Ga等元素,包裹含Pb和Zn微粒矿物。(5)锰结核吸附包裹成矿,锰结核吸附和包裹Sn、Pb和Cu等元素和微粒矿物。(6)类质同象成矿,如Ga和Al类质同象,Cd和Zn等类质同象成矿。(7)岩溶作用成矿,岩溶落水洞或溶洞内水流冲刷使锡石等重矿物富集成矿。元素表生成矿不仅是单一成矿作用结果,而是综合作用结果,如Pb有表生矿物富集成矿,也有铁锰氧化物吸附成矿。 3. 砂矿中锰结核是锰铁结核,主要成分为Fe2O3 、Al2O3、SiO2和MnO等,包裹了赤铁矿、方解石、云母、石英、蒙脱石、高岭石、白云石、钾长石等和锡石、白铅矿等矿物。锰结核中Mn、Sn、Pb、Ag、Ga、Cd和In富集成矿,Cu和Zn富集矿化,锰结核比砂矿更富集Mn、Pb和REE,其成矿机理应是吸附和包裹成矿元素或矿物使其富集成矿。 4. 个旧表生砂矿共生伴生组分复杂,有用矿物有锡石、方铅矿、白铅矿、黄铜矿、自然铅、自然铜、孔雀石、软锰矿、白钨矿、磁铁矿和褐铁矿等。模拟岩溶作用自然过程中砂矿矿物流向的源兴采选车间砂矿重选流程结果表明,锡铅精矿中Pb、Ga、Mo、Cd、In、Cu和Zn等金属总实收率仅为3.03%~6.44%,绝大部分金属留在了尾矿中。一段床和矿泥床分析中,Ag和Mn回收率低于0.66%~0.29%,Ag富集在硫化物态中,没有富集在铁锰氧化物态中;Mn富集在碳酸盐态中,没有铁锰氧化物态中。整个流程中Pb、Mn、Cu和Zn等富集在碳酸盐态矿物中,没有富集在硫化物态中。选矿流程没有利用具有潜在利用价值矿物如磁铁矿。重选流程解释了岩溶过程能富集Pb、Mn、Cu和Zn的碳酸盐矿物,不能富集这些元素的硫化矿物。 5. 老挝Ban Nameung硫化矿氧化初期,风化产物中Ag、Pb、Zn和Cu淋失,SiO2、K2O和CaO富集,风化后期Ag、Fe和Mn富集。硫化矿风化过程中,Au硫化物态部分变为有机态和铁锰氧化物态;Ag硫化物态部分变为铁锰氧化物态和有机态;Cu硫化物态部分变为铁锰氧化物态和碳酸盐态;Pb硫化物态、吸附态、碳酸盐态和铁锰氧化物态部分变为铁锰氧化物态、碳酸盐态和有机态;Zn硫化物态变为部分铁锰氧化物态、有机态、碳酸盐态和吸附态矿物。随着风化作用加强,上述几种相态比例还会改变。 6. 老挝Boloven新生代亚碱性玄武岩富Nb、Ta和Ga等微量元素,风化壳中REE、Nb、Ta和Ga已富集成矿,∑REE最高775×10-6~1003×10-6,(Nb2O5+Ta2O5)最高642×10-6~656×10-6,Ga最高81.6 ×10-6。风化壳中达到边界品位的(Nb2O5+Ta2O5)厚度有2m以上。REE可能存在于含P和Ti矿物中,也可能形成REE独立矿物。Nb、Ta和Ga应赋存在Ti、U、Zr和Th矿物中,其成矿应是重矿物表生残留富集结果,与粘土矿物吸附和三水铝石关系不紧密。