458 resultados para MIDGUT-LYSOZYME
Resumo:
The leaf-cut ants are important agricultural pest, because they can cause intense defoliation in plants and destroy large areas cultivated. Although there are several works for the control of these insects by examining the toxicity of natural chemical compounds on various species of ants, few are focused on analyses of morphological changes caused in the affected organs. The aim of this study was to evaluate the effects of hydramethylnon on Atta sexdens rubropilosa workers through toxicological bioassays and morphological analysis of the post-pharyngeal glands, midgut, and Malpighian tubules of these ants. Hydramethylnon dissolved either in acetone (HA) or in a mixture of acetone and soy oil (HAO) was added to the artificial diet at a concentration of 200 μg/mL. The workers fed daily with the diet containing hydramethylnon showed higher mortality than the controls, especially when HAO was used. Moreover, light and electron microscopy revealed morphological alterations in the midgut and Malpighian tubules of workers treated with HA, whereas alterations of the post-pharyngeal glands were observed in the HAO-treated group. These results indicated that the presence of soy oil provided an alternate route for the ingestion of the formicide's active ingredient and corroborated previous studies that suggested a role for the post-pharyngeal glands in lipid metabolism. Our findings suggest that the oil may carry hydramethylnon to the gland lumen, resulting in lower quantity of the active ingredient in the intestinal lumen and Malpighian tubules that explains the lower degree of morphological alterations in these structures in the workers treated with HAO. These results may provide insight into the toxicological effects of hydramethylnon on leaf-cutting ants and the use of vegetable oil as an adjuvant in baits to control ants. © 2012 Elsevier Ltd.
Resumo:
Chitosan has been indicated as a safe and promising polycation vector for gene delivery. However its low transfection efficiency has been a challenging obstacle for its application. To address this limitation, we synthesized chitosan derivatives which had increasing amounts of diethylethylamine groups (DEAE) attached to the chitosan main chain. The plasmid DNA VR1412 (pDNA), encoding the ß-galactosidase (ß-gal) reporter gene was used to prepare nanoparticles with the chitosan derivatives, and the transfection studies were performed with HeLa cells. By means of dynamic light scattering and zeta potential measurements, it was shown that diethylethylamine-chitosan derivatives (DEAEx-CH) were able to condense DNA into small particles having a surface charge depending on the polymer/DNA ratio (N/P ratio). Nanoparticles prepared with derivatives containing 15 and 25% of DEAE groups (DEAE15-CH and DEAE25-CH) exhibited transfection efficiencies ten times higher than that observed with deacetylated chitosan (CH). For derivatives with higher degrees of substitution (DS), transfection efficiency decreased. The most effective carriers showed low cytotoxicity and good transfection activities at low charge ratios (N/P). Vectors with low DS were easily degraded in the presence of lysozyme at physiological conditions in vitro and the nontoxicity displayed by these vectors opens up new opportunities in the design of DEAE-chitosan-based nanoparticles for gene delivery. © 2013 IOP Publishing Ltd.
Resumo:
Recent studies have shown that ingestion by the army worm Spodoptera frugiperda of Cry1Ac toxin from Bt cotton promotes histochemical and ultrastructural changes in the digestive cells of the predatory pentatomid bug Podisus nigrispinus. Therefore, mindful of the changes in the midgut of the predator, which represents the first line of defence in this insect, our aim was to test the hypothesis that the consumption of Bt cotton-fed S. frugiperda by P. nigrispinus might lead to alterations in components of the immune system of P. nigrispinus. The Cry1Ac toxin level in the leaves of Bt cotton, nitric oxide, phenoloxidase activity, and total proteins were quantified by ELISA. Total and differential hemocyte counts were evaluated, and hemocyte ultrastructure analysis was undertaken. We found that ingestion of the prey fed daily with approximately 23 ± 0.70 ng g-1 Cry1Ac by wet weight of leaves, and expressed by the Bt cotton, induces small ultrastructural changes in the predator's granulocytes and plasmatocytes. However, these changes did not affect the total number and differential and humoral variables analyzed for the bug's hemocytes. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Vampire bats are notorious for being the sole mammals that strictly feed on fresh blood for their survival. While their saliva has been historically associated with anticoagulants, only one antihemostatic (plasminogen activator) has been molecularly and functionally characterized. Here, RNAs from both principal and accessory submaxillary (submandibular) salivary glands of Desmodus rotundus were extracted, and ~. 200. million reads were sequenced by Illumina. The principal gland was enriched with plasminogen activators with fibrinolytic properties, members of lipocalin and secretoglobin families, which bind prohemostatic prostaglandins, and endonucleases, which cleave neutrophil-derived procoagulant NETs. Anticoagulant (tissue factor pathway inhibitor, TFPI), vasodilators (PACAP and C-natriuretic peptide), and metalloproteases (ADAMTS-1) were also abundantly expressed. Members of the TSG-6 (anti-inflammatory), antigen 5/CRISP, and CCL28-like (antimicrobial) protein families were also sequenced. Apyrases (which remove platelet agonist ADP), phosphatases (which degrade procoagulant polyphosphates), and sphingomyelinase were found at lower transcriptional levels. Accessory glands were enriched with antimicrobials (lysozyme, defensin, lactotransferrin) and protease inhibitors (TIL-domain, cystatin, Kazal). Mucins, heme-oxygenase, and IgG chains were present in both glands. Proteome analysis by nano LC-MS/MS confirmed that several transcripts are expressed in the glands. The database presented herein is accessible online at http://exon.niaid.nih.gov/transcriptome/D_rotundus/Supplemental-web.xlsx. These results reveal that bat saliva emerges as a novel source of modulators of vascular biology. Biological significance: Vampire bat saliva emerges as a novel source of antihemostatics which modulate several aspects of vascular biology. © 2013.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)