907 resultados para MEMBRANE ELEVATION
Resumo:
Trichosanthin (TCS) is a type I ribosome-inactivating protein (RIP) effective against HIV-1 and HSV-1 replication. The mechanism of its antiviral activity is not clear. Many believe that it is related to ribosome inactivation. Some RIPs and viral infectio
Resumo:
The characterization of acid-sensing ion channel (ASIC)-like currents has been reported in hippocampal neurons in primary culture. However, it is suggested that the profile of expression of ASICs changes in culture. In this study, we investigated the properties of proton-activated current and its modulation by extracellular Ca2+ and Zn2+ in neurons acutely dissociated from the rat hippocampal CA1 using conventional whole-cell patch-clamp recording. A rapidly decaying inward current and membrane depolarization was induced by exogenous application of acidic solution. The current was sensitive to the extracellular proton with a response threshold of pH 7.0-6.8 and the pH(50) Of 6.1, the reversal potential close to the Na+ equilibrium potential. It had a characteristic of acid-sensing ion channels (ASICs) as demonstrated by its sensitivity to amiloride (IC50 = 19.6 +/- 2.1 muM). Either low [Ca2+](0) or high [Zn2+](0) increased the amplitude of the current. All these characteristics are consistent with a current mediated through a mixture of homomeric ASIC1a and heteromeric ASIC1a + 2a channels and closely replicate many of the characteristics that have been previously reported for hippocampal neurons cultured for a week or more, indicating that culture artifacts do not necessarily flaw the properties of ASICs. Interestingly, we found that high [Zn2+] (>10(-4) M) slowed the decay time constant of the ASIC-like current significantly in both acutely dissociated and cultured hippocampal neurons. In addition, the facilitating effects of low [Ca2+](0) and high [Zn2+](0) on the ASIC-like current were not additive. Since tissue acidosis, extracellular Zn elevation and/or Ca2+ reduction occur concurrently under some physiological and/or pathological conditions, the present observations suggest that hippocampal ASICs may offer a novel pharmacological target for therapeutic invention. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Leptobrachium ailaonicum is a vulnerable anuran restricted to a patchy distribution associated with small mountain streams surrounded by forested slopes at mid-elevations (approximately 2000-2600 m) in the subtropical Mount Wuliang and Mount Ailao ranges in southwest China (Yunnan Province) and northern Vietnam. Given high habitat specificity and lack of suitable habitat in lower elevations between these ranges, we hypothesized limited gene flow between populations throughout its range. We used two mitochondrial genes to construct a phylogeographic pattern within this species in order to test our hypothesis. We also examined whether this phylogeographic pattern is a response to past geological events and/or climatic oscillations. A total of 1989 base pairs were obtained from 81 individuals of nine populations yielding 51 unique haplotypes. Both Bayesian and maximum parsimony phylogenetic analyses revealed four deeply divergent and reciprocally monophyletic mtDNA lineages that approximately correspond to four geographical regions separated by deep river valleys. These results suggest a long history of allopatric separation by vicariance. The distinct geographic distributions of four major clades and the estimated divergence time suggest spatial and temporal separations that coincide with climatic and paleogeographic changes following the orogeny and uplift of Mount Ailao during the late Miocene to mid Pliocene in southwest China. At the southern distribution, the presence of two sympatric yet differentiated clades in two areas are interpreted as a result of secondary contact between previously allopatric populations during cooler Pleistocene glacial cycles. Analysis of molecular variance indicates that most of the observed genetic variation occurs among the four regions implying long-term interruption of maternal gene flow, suggesting that L ailaonicum may represent more than one distinct species and should at least be separated into four management units corresponding to these four geographic lineages for conservation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This study concerns the wrinkling performance of thin membranes for use as novel reflectors in space-based telescopes. We introduce small-scale experiments for inducing and interrogating wrinkling patterns in at membranes, and we capture these details computationally by performing a range of finite element analysis. The overall aim is to assess the sophistication of modelling, to verify the feasibility of a small-diameter reector concept proposed in accompanying work. © 2009 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
This paper introduces a pressure sensing structure configured as a stress sensitive differential amplifier (SSDA), built on a Silicon-on-Insulator (SOI) membrane. Theoretical calculation show the significant increase in sensitivity which is expected from the pressure sensors in SSDA configuration compared to the traditional Wheatstone bridge circuit. Preliminary experimental measurements, performed on individual transistors placed on the membrane, exhibit state-the-art sensitivity values (1.45mV/mbar). © 2012 IEEE.
Resumo:
The fabrication of flexible multilayer graphene oxide (GO) membrane and carbon nanotubes (CNTs) using a rare form of high-purity natural graphite, vein graphite, is reported for the first time. Graphite oxide is synthesized using vein graphite following Hummer's method. By facilitating functionalized graphene sheets in graphite oxide to self-assemble, a multilayer GO membrane is fabricated. Electric arc discharge is used to synthesis CNTs from vein graphite. Both multilayer GO membrane and CNTs are investigated using microscopy and spectroscopy experiments, i.e., scanning electron microscopy (SEM), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), core level photoelectron spectroscopy, and C K-edge X-ray absorption spectroscopy (NEXAFS), to characterize their structural and topographical properties. Characterization of vein graphite using different techniques reveals that it has a large number of crystallites, hence the large number of graphene sheets per crystallite, preferentially oriented along the (002) plane. NEXAFS and core level spectra confirm that vein graphite is highly crystalline and pure. Fourier transform infrared (FT-IR) and C 1s core level spectra show that oxygen functionalities (-C-OH, -CO,-C-O-C-) are introduced into the basal plane of graphite following chemical oxidation. Carbon nanotubes are produced from vein graphite through arc discharge without the use of any catalyst. HRTEM confirm that multiwalled carbon nanotube (MWNTs) are produced with the presence of some structure in the central pipe. A small percentage of single-walled nanotubes (SWNTs) are also produced simultaneously with MWNTs. Spectroscopic and microscopic data are further discussed here with a view to using vein graphite as the source material for the synthesis of carbon nanomaterials. © 2013 American Chemical Society.
Resumo:
There is increasing evidence for the involvement of lipid membranes in both the functional and pathological properties of α-synuclein (α-Syn). Despite many investigations to characterize the binding of α-Syn to membranes, there is still a lack of understanding of the binding mode linking the properties of lipid membranes to α-Syn insertion into these dynamic structures. Using a combination of an optical biosensing technique and in situ atomic force microscopy, we show that the binding strength of α-Syn is related to the specificity of the lipid environment (the lipid chemistry and steric properties within a bilayer structure) and to the ability of the membranes to accommodate and remodel upon the interaction of α-Syn with lipid membranes. We show that this interaction results in the insertion of α-Syn into the region of the headgroups, inducing a lateral expansion of lipid molecules that can progress to further bilayer remodeling, such as membrane thinning and expansion of lipids out of the membrane plane. We provide new insights into the affinity of α-Syn for lipid packing defects found in vesicles of high curvature and in planar membranes with cone-shaped lipids and suggest a comprehensive model of the interaction between α-Syn and lipid bilayers. The ability of α-Syn to sense lipid packing defects and to remodel membrane structure supports its proposed role in vesicle trafficking.
Resumo:
Iron deficiency can induce cyanobacteria to synthesize siderophore receptor proteins on the outer membrane to enhance the uptake of iron. In this study, an outer membrane of high purity was prepared from Anabaena sp. PCC 7120 based on aqueous polymer two-phase partitioning and discontinuous sucrose density ultra-centrifugation, and the induction of outer membrane proteins by iron deficiency was investigated using 2-D gel electrophoresis. At least. five outer membrane proteins were newly synthesized or significantly up-regulated in cells transferred to iron-deficient conditions, which were all identified to be siderophore receptor proteins according to MALDI-TOF-MS analyses. Bacterial luciferase reporter genes luxAB were employed to monitor the transcription of the encoding genes. The genes were induced by iron deficiency at the transcriptional level in different responsive modes. Luciferase activity expressed from an iron-regulated promoter may be used as a bioreporter for utilizable iron in natural water samples. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
Geographical Information Systems (GIS) and Digital Elevation Models (DEM) can be used to perform many geospatial and hydrological modelling including drainage and watershed delineation, flood prediction and physical development studies of urban and rural settlements. This paper explores the use of contour data and planimetric features extracted from topographic maps to derive digital elevation models (DEMs) for watershed delineation and flood impact analysis (for emergency preparedness) of part of Accra, Ghana in a GIS environment. In the study two categories of DEMs were developed with 5 m contour and planimetric topographic data; bare earth DEM and built environment DEM. These derived DEMs were used as terrain inputs for performing spatial analysis and obtaining derivative products. The generated DEMs were used to delineate drainage patterns and watershed of the study area using ArcGIS desktop and its ArcHydro extension tool from Environmental Systems Research Institute (ESRI). A vector-based approach was used to derive inundation areas at various flood levels. The DEM of built-up areas was used as inputs for determining properties which will be inundated in a flood event and subsequently generating flood inundation maps. The resulting inundation maps show that about 80% areas which have perennially experienced extensive flooding in the city falls within the predicted flood extent. This approach can therefore provide a simplified means of predicting the extent of inundation during flood events for emergency action especially in less developed economies where sophisticated technologies and expertise are hard to come by. © 2009 Springer Netherlands.
Resumo:
Bioavailable water concentrations of polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB) and organochlorine pesticides (OCP) were measured in the water column from Three Gorges Reservoir (TGR) collected in May 2008 using semipermeable membrane devices (SPMDs). The sampling sites spanned the whole reservoir from the upstream Chongqing to the great dam covering more than 600 km long distance with water flow velocities ranging from <0.05 to 1.5 m s(-1). This is the first experience of SPMD application in the biggest reservoir in the world. The results of water sampling rates based on performance reference compounds (PRC) were tested to be significantly correlated with water flow velocities in the big river. Results of back-calculated aqueous concentrations based on PRC showed obvious regional variations of PAH, PCB and OCP levels in the reservoir. Total PAH ranged from 13.8 to 97.2 ng L-1, with the higher concentrations occurring in the region of upstream and near the dam. Phenanthrene, fluoranthene, pyrene and chrysene were the predominant PAH compounds in TGR water. Total PCB ranged from 0.08 to 0.51 ng L-1, with the highest one occurring in the region near the dam. PCB 28, 52, 101, 138, 153, 180, 118 were the most abundant PCB congeners in the water. The total OCP ranged from 2.33 to 3.60 ng L-1 and the levels showed homogenous distribution in the whole reservoir. HCH, DDT and HCB, PeCB were the major compounds of OCP fingerprints. Based on water quality criteria, the TGR water could be designated as being polluted by HCB and PAH. Data on PAH, PCB and OCP concentrations found in this survey can be used as reference levels for future POP monitoring programmes in TGR. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The bacterial diversity of activated sludge from submerged membrane bioreactor (SMBR) was investigated. A 16S rDNA clone library was generated, and 150 clones were screened using restriction fragment length polymorphism (RFLP). Of the screened clones, almost full-length 16S rDNA sequences of 64 clones were sequenced. Phylogenetic tree was constructed with a database containing clone sequences from this study and bacterial rDNA sequences from NCB1 for identification purposes. The 90.6% of the clones were affiliated with the two phyla Bacteroidetes (50%) and Proteobacteria (40%), and beta-, -gamma-, and delta-Proteobacteria accounted for 7.8%, 28.1%, and 4.7%, respectively. Minor portions were affiliated with the Actinobacteria and Firmicutes (both 3.1%). Only 6 out of 64 16S rDNA sequences exhibited similarities of more than 97% to classified bacterial species, which indicated that a substantial fraction of the clone sequences were derived from unknown taxa. Rarefaction analysis of operational taxonomic units (orrUs) clusters demonstrated that 150 clones screened were still insufficient to describe the whole bacterial diversity. Measurement of water quality parameter demonstrated that performance of the SMBR maintained high level, and the SMBR system remained stable during this study.
Resumo:
Outer membrane proteins (OMPs) of bacteria are key molecules interacting with the host environment. Flavobacterium columnare, a pathogen-causing columnaris disease of fish worldwide, was studied in order to understand the composition of its OMPs. The sarcosine-insoluble membrane fraction of the OMPs was analysed using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) in combination with reverse-phase high-performance liquid chromatography-tandem mass spectrometry (RP-HPLC MS/MS). Thirty-six proteins were identified, including proteins involved in cell wall/membrane biogenesis, specific transport of various nutrients and in essential metabolism. The present study is the first report on the OMPs of F. columnare, and may serve as the basis for understanding the pathogenesis of the bacterium.
Resumo:
Power-time curves and metabolic properties of Tetrahymena thermophila BF5 exposed to different Yb3+ stop levels were studied by ampoule method of isothermal calorimetry at 28 degrees C. Metabolic rate (r) decreased significantly while peak time (PT) increased with the increase of Yb3+ stop. These results were mainly due to the inhibition of cell growth, which corresponded to the decrease of cell number obtained by cell counting. Compared with cell counting, calorimetry was sensible, easy to use and convenient for monitoring the toxic effects of Yb3+ stop on cells and freshwater ecosystem. It was also found that cell membrane fluidity decreased significantly under the effects of Yb3+ stop, which indicated that Yb3+ could be membrane active molecules with its effect on cell membranes as fundamental aspect of its toxicity.
Resumo:
In this study, optimization of operational conditions of a submerged membrane bioreactor treating municipal waste-water was studied. Mixed liquid suspended solid (MLSS), membrane flux (J(v)), aeration (Q), ratio of pumping, time to break time (t(p)/t(b)), and ratio of up flow area to down flow area (A Ad) were chosen as the easily manipulable parameters to study their effects on removal efficiency and membrane fouling. Totally, 16 different runs were designed to compare and select the best combination of the 5 parameters. The results showed that the optimal operational conditions were MLSS = 7g(.)L(-1), J(v) = 10L(.)m(-2.)h(-1), Q = 6 m(3.)h(-1), t(p)/t(b)= 4 min/1 min, and A(r)/A(d) = 1.7 m(2)/m(2). Under such conditions, the SMBR could achieve a double win of high removal efficiency and low membrane fouling.