548 resultados para Lipschitz, Funcions de
Resumo:
We characterize the approach regions so that the non-tangential maximal function is of weak-type on potential spaces, for which we use a simple argument involving Carleson measure estimates.
Resumo:
We describe one of the research lines of the Grup de Teoria de Funcions de la UAB UB, which deals with sampling and interpolation problems in signal analysis and their connections with complex function theory.
Resumo:
We characterize the Schatten class membership of the canonical solution operator to $\overline{\partial}$ acting on $L^2(e^{-2\phi})$, where $\phi$ is a subharmonic function with $\Delta\phi$ a doubling measure. The obtained characterization is in terms of $\Delta\phi$. As part of our approach, we study Hankel operators with anti-analytic symbols acting on the corresponding Fock space of entire functions in $L^2(e^{-2\phi})$
Resumo:
We prove some results concerning the possible configuration s of Herman rings for transcendental meromorphic functions. We show that one pole is enough to obtain cycles of Herman rings of arbitrary period a nd give a sufficient condition for a configuration to be realizable.
Resumo:
Fekete points are the points that maximize a Vandermonde-type determinant that appears in the polynomial Lagrange interpolation formula. They are well suited points for interpolation formulas and numerical integration. We prove the asymptotic equidistribution of Fekete points in the sphere. The way we proceed is by showing their connection to other arrays of points, the so-called Marcinkiewicz-Zygmund arrays and interpolating arrays, that have been studied recently.
Resumo:
En este documento se ilustra de un modo práctico, el empleo de tres instrumentos que permiten al actuario definir grupos arancelarios y estimar premios de riesgo en el proceso que tasa la clase para el seguro de no vida. El primero es el análisis de segmentación (CHAID y XAID) usado en primer lugar en 1997 por UNESPA en su cartera común de coches. El segundo es un proceso de selección gradual con el modelo de regresión a base de distancia. Y el tercero es un proceso con el modelo conocido y generalizado de regresión linear, que representa la técnica más moderna en la bibliografía actuarial. De estos últimos, si combinamos funciones de eslabón diferentes y distribuciones de error, podemos obtener el aditivo clásico y modelos multiplicativos
Resumo:
It is very well known that the first succesful valuation of a stock option was done by solving a deterministic partial differential equation (PDE) of the parabolic type with some complementary conditions specific for the option. In this approach, the randomness in the option value process is eliminated through a no-arbitrage argument. An alternative approach is to construct a replicating portfolio for the option. From this viewpoint the payoff function for the option is a random process which, under a new probabilistic measure, turns out to be of a special type, a martingale. Accordingly, the value of the replicating portfolio (equivalently, of the option) is calculated as an expectation, with respect to this new measure, of the discounted value of the payoff function. Since the expectation is, by definition, an integral, its calculation can be made simpler by resorting to powerful methods already available in the theory of analytic functions. In this paper we use precisely two of those techniques to find the well-known value of a European call
Resumo:
[eng] In the context of cooperative TU-games, and given an order of players, we consider the problem of distributing the worth of the grand coalition as a sequentia decision problem. In each step of process, upper and lower bounds for the payoff of the players are required related to successive reduced games. Sequentially compatible payoffs are defined as those allocation vectors that meet these recursive bounds. The core of the game is reinterpreted as a set of sequentally compatible payoffs when the Davis-Maschler reduced game is considered (Th.1). Independently of the reduction, the core turns out to be the intersections of the family of the sets of sequentially compatible payoffs corresponding to the different possible orderings (Th.2), so it is in some sense order-independent. Finally, we analyze advantagenous properties for the first player
Resumo:
[cat] En aquest treball s'analitza un model estocàstic en temps continu en el que l'agent decisor descompta les utilitats instantànies i la funció final amb taxes de preferència temporal constants però diferents. En aquest context es poden modelitzar problemes en els quals, quan el temps s'acosta al moment final, la valoració de la funció final incrementa en comparació amb les utilitats instantànies. Aquest tipus d'asimetria no es pot descriure ni amb un descompte estàndard ni amb un variable. Per tal d'obtenir solucions consistents temporalment es deriva l'equació de programació dinàmica estocàstica, les solucions de la qual són equilibris Markovians. Per a aquest tipus de preferències temporals, s'estudia el model clàssic de consum i inversió (Merton, 1971) per a les funcions d'utilitat del tipus CRRA i CARA, comparant els equilibris Markovians amb les solucions inconsistents temporalment. Finalment es discuteix la introducció del temps final aleatori.