952 resultados para Lidar ratio


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate model simulations consistently show that in response to greenhouse gas forcing surface temperatures over land increase more rapidly than over sea. The enhanced warming over land is not simply a transient effect, since it is also present in equilibrium conditions. We examine 20 models from the IPCC AR4 database. The global land/sea warming ratio varies in the range 1.36–1.84, independent of global mean temperature change. In the presence of increasing radiative forcing, the warming ratio for a single model is fairly constant in time, implying that the land/sea temperature difference increases with time. The warming ratio varies with latitude, with a minimum in equatorial latitudes, and maxima in the subtropics. A simple explanation for these findings is provided, and comparisons are made with observations. For the low-latitude (40°S–40°N) mean, the models suggest a warming ratio of 1.51 ± 0.13, while recent observations suggest a ratio of 1.54 ± 0.09.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic sensors have been added to a standard weather balloon radiosonde package to detect motion in turbulent air. These measure the terrestrial magnetic field and return data over the standard uhf radio telemetry. Variability in the magnetic sensor data is caused by motion of the instrument package. A series of radiosonde ascents carrying these sensors has been made near a Doppler lidar measuring atmospheric properties. Lidar-retrieved quantities include vertical velocity (w) profile and its standard deviation (w). w determined over 1 h is compared with the radiosonde motion variability at the same heights. Vertical motion in the radiosonde is found to be robustly increased when w>0.75 m s−1 and is linearly proportional to w. ©2009 American Institute of Physics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of the vertical velocity of ice crystals observed with a 1.5micron Doppler lidar from a continuous sample of stratiform ice clouds over 17 months show that the distribution of Doppler velocity varies strongly with temperature, with mean velocities of 0.2m/s at -40C, increasing to 0.6m/s at -10C due to particle growth and broadening of the size spectrum. We examine the likely influence of crystals smaller than 60microns by forward modelling their effect on the area-weighted fall speed, and comparing the results to the lidar observations. The comparison strongly suggests that the concentration of small crystals in most clouds is much lower than measured in-situ by some cloud droplet probes. We argue that the discrepancy is likely due to shattering of large crystals on the probe inlet, and that numerous small particles should not be included in numerical weather and climate model parameterizations.