841 resultados para Lewy bodies parkinson disease


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Deep Brain Stimulation (DBS) is a treatment routinely used to alleviate the symptoms of Parkinson's disease (PD). In this type of treatment, electrical pulses are applied through electrodes implanted into the basal ganglia of the patient. As the symptoms are not permanent in most patients, it is desirable to develop an on-demand stimulator, applying pulses only when onset of the symptoms is detected. This study evaluates a feature set created for the detection of tremor - a cardinal symptom of PD. The designed feature set was based on standard signal features and researched properties of the electrical signals recorded from subthalamic nucleus (STN) within the basal ganglia, which together included temporal, spectral, statistical, autocorrelation and fractal properties. The most characterized tremor related features were selected using statistical testing and backward algorithms then used for classification on unseen patient signals. The spectral features were among the most efficient at detecting tremor, notably spectral bands 3.5-5.5 Hz and 0-1 Hz proved to be highly significant. The classification results for determination of tremor achieved 94% sensitivity with specificity equaling one.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Riluzole is a neuroprotective drug used in the treatment of motor neurone disease. Recent evidence suggests that riluzole can up-regulate the expression and activity of the astrocyte glutamate transporter, GLT-1. Given that regulation of glutamate transport is predicted to be neuroprotective in Parkinson's disease, we tested the effect of riluzole in parkinsonian rats which had received a unilateral 6-hydroxydopamine injection into the median forebrain bundle. Results Rats were treated with intraperitoneal riluzole (4 mg/kg or 8 mg/kg), 1 hour before the lesion then once daily for seven days. Riluzole produced a modest but significant attenuation of dopamine neurone degeneration, assessed by suppression of amphetamine-induced rotations, preservation of tyrosine hydroxylase positive neuronal cell bodies in the substantia nigra pars compacta and attenuation of striatal tyrosine hydroxylase protein loss. Seven days after 6-hydroxydopamine lesion, reactive astrocytosis was observed in the striatum, as determined by increases in expression of glial fibrillary acidic protein, however the glutamate transporter, GLT-1, which is also expressed in astrocytes was not regulated by the lesion. Conclusions The results confirm that riluzole is a neuroprotective agent in a rodent model of parkinson’s disease. Riluzole administration did not regulate GLT-1 levels but significantly reduced GFAP levels, in the lesioned striatum. Riluzole suppression of reactive astrocytosis is an intriguing finding which might contribute to the neuroprotective effects of this drug.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of Parkinson's disease (PD). LRRK2 contains a Ras of complex proteins (ROC) domain that may act as a GTPase to regulate its protein kinase activity. The structure of ROC and the mechanism(s) by which it regulates kinase activity are not known. Here, we report the crystal structure of the LRRK2 ROC domain in complex with GDP-Mg2+ at 2.0-Å resolution. The structure displays a dimeric fold generated by extensive domain-swapping, resulting in a pair of active sites constructed with essential functional groups contributed from both monomers. Two PD-associated pathogenic residues, R1441 and I1371, are located at the interface of two monomers and provide exquisite interactions to stabilize the ROC dimer. The structure demonstrates that loss of stabilizing forces in the ROC dimer is likely related to decreased GTPase activity resulting from mutations at these sites. Our data suggest that the ROC domain may regulate LRRK2 kinase activity as a dimer, possibly via the C-terminal of ROC (COR) domain as a molecular hinge. The structure of the LRRK2 ROC domain also represents a signature from a previously undescribed class of GTPases from complex proteins and results may provide a unique molecular target for therapeutics in PD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Approximately 20 % of individuals with Parkinson's disease (PD) report a positive family history. Yet, a large portion of causal and disease-modifying variants is still unknown. We used exome sequencing in two affected individuals from a family with late-onset PD to identify 15 potentially causal variants. Segregation analysis and frequency assessment in 862 PD cases and 1,014 ethnically matched controls highlighted variants in EEF1D and LRRK1 as the best candidates. Mutation screening of the coding regions of these genes in 862 cases and 1,014 controls revealed several novel non-synonymous variants in both genes in cases and controls. An in silico multi-model bioinformatics analysis was used to prioritize identified variants in LRRK1 for functional follow- up. However, protein expression, subcellular localization, and cell viability were not affected by the identified variants. Although it has yet to be proven conclusively that variants in LRRK1 are indeed causative of PD, our data strengthen a possible role for LRRK1 in addition to LRRK2 in the genetic underpinnings of PD but, at the same time, highlight the difficulties encountered in the study of rare variants identified by next-generation sequencing in diseases with autosomal dominant or complex patterns of inheritance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Parkinson is a neurodegenerative disease, in which tremor is the main symptom. This paper investigates the use of different classification methods to identify tremors experienced by Parkinsonian patients.Some previous research has focussed tremor analysis on external body signals (e.g., electromyography, accelerometer signals, etc.). Our advantage is that we have access to sub-cortical data, which facilitates the applicability of the obtained results into real medical devices since we are dealing with brain signals directly. Local field potentials (LFP) were recorded in the subthalamic nucleus of 7 Parkinsonian patients through the implanted electrodes of a deep brain stimulation (DBS) device prior to its internalization. Measured LFP signals were preprocessed by means of splinting, down sampling, filtering, normalization and rec-tification. Then, feature extraction was conducted through a multi-level decomposition via a wavelettrans form. Finally, artificial intelligence techniques were applied to feature selection, clustering of tremor types, and tremor detection.The key contribution of this paper is to present initial results which indicate, to a high degree of certainty, that there appear to be two distinct subgroups of patients within the group-1 of patients according to the Consensus Statement of the Movement Disorder Society on Tremor. Such results may well lead to different resultant treatments for the patients involved, depending on how their tremor has been classified. Moreover, we propose a new approach for demand driven stimulation, in which tremor detection is also based on the subtype of tremor the patient has. Applying this knowledge to the tremor detection problem, it can be concluded that the results improve when patient clustering is applied prior to detection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Parkinson's disease (PD) is the second most common neurodegenerative disorder (after Alzheimer's disease) and directly affects upto 5 million people worldwide. The stages (Hoehn and Yaar) of disease has been predicted by many methods which will be helpful for the doctors to give the dosage according to it. So these methods were brought up based on the data set which includes about seventy patients at nine clinics in Sweden. The purpose of the work is to analyze unsupervised technique with supervised neural network techniques in order to make sure the collected data sets are reliable to make decisions. The data which is available was preprocessed before calculating the features of it. One of the complex and efficient feature called wavelets has been calculated to present the data set to the network. The dimension of the final feature set has been reduced using principle component analysis. For unsupervised learning k-means gives the closer result around 76% while comparing with supervised techniques. Back propagation and J4 has been used as supervised model to classify the stages of Parkinson's disease where back propagation gives the variance percentage of 76-82%. The results of both these models have been analyzed. This proves that the data which are collected are reliable to predict the disease stages in Parkinson's disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: We present a new evaluation of levodopa plasma concentrations and clinical effects during duodenal infusion of a levodopa/carbidopa gel (Duodopa ) in 12 patients with advanced Parkinson s disease (PD), from a study reported previously (Nyholm et al, Clin Neuropharmacol 2003; 26(3): 156-163). One objective was to investigate in what state of PD we can see the greatest benefits with infusion compared with corresponding oral treatment (Sinemet CR). Another objective was to identify fluctuating response to levodopa and correlate to variables related to disease progression. Methods: We have computed mean absolute error (MAE) and mean squared error (MSE) for the clinical rating from -3 (severe parkinsonism) to +3 (severe dyskinesia) as measures of the clinical state over the treatment periods of the study. Standard deviation (SD) of the rating was used as a measure of response fluctuations. Linear regression and visual inspection of graphs were used to estimate relationships between these measures and variables related to disease progression such as years on levodopa (YLD) or unified PD rating scale part II (UPDRS II).Results: We found that MAE for infusion had a strong linear correlation to YLD (r2=0.80) while the corresponding relation for oral treatment looked more sigmoid, particularly for the more advanced patients (YLD>18).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: To investigate whether spirography-based objective measures are able to effectively characterize the severity of unwanted symptom states (Off and dyskinesia) and discriminate them from motor state of healthy elderly subjects. Background: Sixty-five patients with advanced Parkinson’s disease (PD) and 10 healthy elderly (HE) subjects performed repeated assessments of spirography, using a touch screen telemetry device in their home environments. On inclusion, the patients were either treated with levodopa-carbidopa intestinal gel or were candidates for switching to this treatment. On each test occasion, the subjects were asked trace a pre-drawn Archimedes spiral shown on the screen, using an ergonomic pen stylus. The test was repeated three times and was performed using dominant hand. A clinician used a web interface which animated the spiral drawings, allowing him to observe different kinematic features, like accelerations and spatial changes, during the drawing process and to rate different motor impairments. Initially, the motor impairments of drawing speed, irregularity and hesitation were rated on a 0 (normal) to 4 (extremely severe) scales followed by marking the momentary motor state of the patient into 2 categories that is Off and Dyskinesia. A sample of spirals drawn by HE subjects was randomly selected and used in subsequent analysis. Methods: The raw spiral data, consisting of stylus position and timestamp, were processed using time series analysis techniques like discrete wavelet transform, approximate entropy and dynamic time warping in order to extract 13 quantitative measures for representing meaningful motor impairment information. A principal component analysis (PCA) was used to reduce the dimensions of the quantitative measures into 4 principal components (PC). In order to classify the motor states into 3 categories that is Off, HE and dyskinesia, a logistic regression model was used as a classifier to map the 4 PCs to the corresponding clinically assigned motor state categories. A stratified 10-fold cross-validation (also known as rotation estimation) was applied to assess the generalization ability of the logistic regression classifier to future independent data sets. To investigate mean differences of the 4 PCs across the three categories, a one-way ANOVA test followed by Tukey multiple comparisons was used. Results: The agreements between computed and clinician ratings were very good with a weighted area under the receiver operating characteristic curve (AUC) coefficient of 0.91. The mean PC scores were different across the three motor state categories, only at different levels. The first 2 PCs were good at discriminating between the motor states whereas the PC3 was good at discriminating between HE subjects and PD patients. The mean scores of PC4 showed a trend across the three states but without significant differences. The Spearman’s rank correlations between the first 2 PCs and clinically assessed motor impairments were as follows: drawing speed (PC1, 0.34; PC2, 0.83), irregularity (PC1, 0.17; PC2, 0.17), and hesitation (PC1, 0.27; PC2, 0.77). Conclusions: These findings suggest that spirography-based objective measures are valid measures of spatial- and time-dependent deficits and can be used to distinguish drug-related motor dysfunctions between Off and dyskinesia in PD. These measures can be potentially useful during clinical evaluation of individualized drug-related complications such as over- and under-medications thus maximizing the amount of time the patients spend in the On state.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: To investigate whether advanced visualizations of spirography-based objective measures are useful in differentiating drug-related motor dysfunctions between Off and dyskinesia in Parkinson’s disease (PD). Background: During the course of a 3 year longitudinal clinical study, in total 65 patients (43 males and 22 females with mean age of 65) with advanced PD and 10 healthy elderly (HE) subjects (5 males and 5 females with mean age of 61) were assessed. Both patients and HE subjects performed repeated and time-stamped assessments of their objective health indicators using a test battery implemented on a telemetry touch screen handheld computer, in their home environment settings. Among other tasks, the subjects were asked to trace a pre-drawn Archimedes spiral using the dominant hand and repeat the test three times per test occasion. Methods: A web-based framework was developed to enable a visual exploration of relevant spirography-based kinematic features by clinicians so they can in turn evaluate the motor states of the patients i.e. Off and dyskinesia. The system uses different visualization techniques such as time series plots, animation, and interaction and organizes them into different views to aid clinicians in measuring spatial and time-dependent irregularities that could be associated with the motor states. Along with the animation view, the system displays two time series plots for representing drawing speed (blue line) and displacement from ideal trajectory (orange line). The views are coordinated and linked i.e. user interactions in one of the views will be reflected in other views. For instance, when the user points in one of the pixels in the spiral view, the circle size of the underlying pixel increases and a vertical line appears in the time series views to depict the corresponding position. In addition, in order to enable clinicians to observe erratic movements more clearly and thus improve the detection of irregularities, the system displays a color-map which gives an idea of the longevity of the spirography task. Figure 2 shows single randomly selected spirals drawn by a: A) patient who experienced dyskinesias, B) HE subject, and C) patient in Off state. Results: According to a domain expert (DN), the spirals drawn in the Off and dyskinesia motor states are characterized by different spatial and time features. For instance, the spiral shown in Fig. 2A was drawn by a patient who showed symptoms of dyskinesia; the drawing speed was relatively high (cf. blue-colored time series plot and the short timestamp scale in the x axis) and the spatial displacement was high (cf. orange-colored time series plot) associated with smooth deviations as a result of uncontrollable movements. The patient also exhibited low amount of hesitation which could be reflected both in the animation of the spiral as well as time series plots. In contrast, the patient who was in the Off state exhibited different kinematic features, as shown in Fig. 2C. In the case of spirals drawn by a HE subject, there was a great precision during the drawing process as well as unchanging levels of time-dependent features over the test trial, as seen in Fig. 2B. Conclusions: Visualizing spirography-based objective measures enables identification of trends and patterns of drug-related motor dysfunctions at the patient’s individual level. Dynamic access of visualized motor tests may be useful during the evaluation of drug-related complications such as under- and over-medications, providing decision support to clinicians during evaluation of treatment effects as well as improve the quality of life of patients and their caregivers. In future, we plan to evaluate the proposed approach by assessing within- and between-clinician variability in ratings in order to determine its actual usefulness and then use these ratings as target outcomes in supervised machine learning, similarly as it was previously done in the study performed by Memedi et al. (2013).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A challenge for the clinical management of Parkinson's disease (PD) is the large within- and between-patient variability in symptom profiles as well as the emergence of motor complications which represent a significant source of disability in patients. This thesis deals with the development and evaluation of methods and systems for supporting the management of PD by using repeated measures, consisting of subjective assessments of symptoms and objective assessments of motor function through fine motor tests (spirography and tapping), collected by means of a telemetry touch screen device. One aim of the thesis was to develop methods for objective quantification and analysis of the severity of motor impairments being represented in spiral drawings and tapping results. This was accomplished by first quantifying the digitized movement data with time series analysis and then using them in data-driven modelling for automating the process of assessment of symptom severity. The objective measures were then analysed with respect to subjective assessments of motor conditions. Another aim was to develop a method for providing comparable information content as clinical rating scales by combining subjective and objective measures into composite scores, using time series analysis and data-driven methods. The scores represent six symptom dimensions and an overall test score for reflecting the global health condition of the patient. In addition, the thesis presents the development of a web-based system for providing a visual representation of symptoms over time allowing clinicians to remotely monitor the symptom profiles of their patients. The quality of the methods was assessed by reporting different metrics of validity, reliability and sensitivity to treatment interventions and natural PD progression over time. Results from two studies demonstrated that the methods developed for the fine motor tests had good metrics indicating that they are appropriate to quantitatively and objectively assess the severity of motor impairments of PD patients. The fine motor tests captured different symptoms; spiral drawing impairment and tapping accuracy related to dyskinesias (involuntary movements) whereas tapping speed related to bradykinesia (slowness of movements). A longitudinal data analysis indicated that the six symptom dimensions and the overall test score contained important elements of information of the clinical scales and can be used to measure effects of PD treatment interventions and disease progression. A usability evaluation of the web-based system showed that the information presented in the system was comparable to qualitative clinical observations and the system was recognized as a tool that will assist in the management of patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: To define and evaluate a Computer-Vision (CV) method for scoring Paced Finger-Tapping (PFT) in Parkinson's disease (PD) using quantitative motion analysis of index-fingers and to compare the obtained scores to the UPDRS (Unified Parkinson's Disease Rating Scale) finger-taps (FT). Background: The naked-eye evaluation of PFT in clinical practice results in coarse resolution to determine PD status. Besides, sensor mechanisms for PFT evaluation may cause patients discomfort. In order to avoid cost and effort of applying wearable sensors, a CV system for non-invasive PFT evaluation is introduced. Methods: A database of 221 PFT videos from 6 PD patients was processed. The subjects were instructed to position their hands above their shoulders besides the face and tap the index-finger against the thumb consistently with speed. They were facing towards a pivoted camera during recording. The videos were rated by two clinicians between symptom levels 0-to-3 using UPDRS-FT. The CV method incorporates a motion analyzer and a face detector. The method detects the face of testee in each video-frame. The frame is split into two images from face-rectangle center. Two regions of interest are located in each image to detect index-finger motion of left and right hands respectively. The tracking of opening and closing phases of dominant hand index-finger produces a tapping time-series. This time-series is normalized by the face height. The normalization calibrates the amplitude in tapping signal which is affected by the varying distance between camera and subject (farther the camera, lesser the amplitude). A total of 15 features were classified using K-nearest neighbor (KNN) classifier to characterize the symptoms levels in UPDRS-FT. The target ratings provided by the raters were averaged. Results: A 10-fold cross validation in KNN classified 221 videos between 3 symptom levels with 75% accuracy. An area under the receiver operating characteristic curves of 82.6% supports feasibility of the obtained features to replicate clinical assessments. Conclusions: The system is able to track index-finger motion to estimate tapping symptoms in PD. It has certain advantages compared to other technologies (e.g. magnetic sensors, accelerometers etc.) for PFT evaluation to improve and automate the ratings

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Previous assessment methods for PG recognition used sensor mechanisms for PG that may cause discomfort. In order to avoid stress of applying wearable sensors, computer vision (CV) based diagnostic systems for PG recognition have been proposed. Main constraints in these methods are the laboratory setup procedures: Novel colored dresses for the patients were specifically designed to segment the test body from a specific colored background. Objective: To develop an image processing tool for home-assessment of Parkinson Gait(PG) by analyzing motion cues extracted during the gait cycles. Methods: The system is based on the idea that a normal body attains equilibrium during the gait by aligning the body posture with the axis of gravity. Due to the rigidity in muscular tone, persons with PD fail to align their bodies with the axis of gravity. The leaned posture of PD patients appears to fall forward. Whereas a normal posture exhibits a constant erect posture throughout the gait. Patients with PD walk with shortened stride angle (less than 15 degrees on average) with high variability in the stride frequency. Whereas a normal gait exhibits a constant stride frequency with an average stride angle of 45 degrees. In order to analyze PG, levodopa-responsive patients and normal controls were videotaped with several gait cycles. First, the test body is segmented in each frame of the gait video based on the pixel contrast from the background to form a silhouette. Next, the center of gravity of this silhouette is calculated. This silhouette is further skeletonized from the video frames to extract the motion cues. Two motion cues were stride frequency based on the cyclic leg motion and the lean frequency based on the angle between the leaned torso tangent and the axis of gravity. The differences in the peaks in stride and lean frequencies between PG and normal gait are calculated using Cosine Similarity measurements. Results: High cosine dissimilarity was observed in the stride and lean frequencies between PG and normal gait. High variations are found in the stride intervals of PG whereas constant stride intervals are found in the normal gait. Conclusions: We propose an algorithm as a source to eliminate laboratory constraints and discomfort during PG analysis. Installing this tool in a home computer with a webcam allows assessment of gait in the home environment.