382 resultados para Levedura cervejeira


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Zootecnia - FMVZ

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological processes are complex and possess emergent properties that can not be explained or predict by reductionism methods. To overcome the limitations of reductionism, researchers have been used a group of methods known as systems biology, a new interdisciplinary eld of study aiming to understand the non-linear interactions among components embedded in biological processes. These interactions can be represented by a mathematical object called graph or network, where the elements are represented by nodes and the interactions by edges that link pair of nodes. The networks can be classi- ed according to their topologies: if node degrees follow a Poisson distribution in a given network, i.e. most nodes have approximately the same number of links, this is a random network; if node degrees follow a power-law distribution in a given network, i.e. small number of high-degree nodes and high number of low-degree nodes, this is a scale-free network. Moreover, networks can be classi ed as hierarchical or non-hierarchical. In this study, we analised Escherichia coli and Saccharomyces cerevisiae integrated molecular networks, which have protein-protein interaction, metabolic and transcriptional regulation interactions. By using computational methods, such as MathematicaR , and data collected from public databases, we calculated four topological parameters: the degree distribution P(k), the clustering coe cient C(k), the closeness centrality CC(k) and the betweenness centrality CB(k). P(k) is a function that calculates the total number of nodes with k degree connection and is used to classify the network as random or scale-free. C(k) shows if a network is hierarchical, i.e. if the clusterization coe cient depends on node degree. CC(k) is an indicator of how much a node it is in the lesse way among others some nodes of the network and the CB(k) is a pointer of how a particular node is among several ...(Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A paracoccidioidomicose (PCM) é micose profunda causada pelo fungo dimórfico Paracoccidioides brasiliensis (Pb), endêmica na América Latina, principalmente no Brasil. A capacidade de P. brasiliensis de não só provocar doença humana, mas também de causar micose com grande variedade de manifestações clínicas, desde formas localizadas até doença disseminada, evoluindo para letalidade, depende provavelmente da virulência do fungo, da habilidade deste em interagir com as estruturas superficiais do hospedeiro e invadi-las, e da resposta imunológica deste último. O sucesso da colonização dos tecidos do hospedeiro pelo fungo é um evento complexo, geralmente envolvendo um ligante codificado pelo patógeno (adesinas) e um receptor da célula. Uma adesina de 30 kDa de P. brasiliensis, ligante de laminina, foi caracterizada através de seqüenciamento de aminoácidos, mostrando que esta é uma proteína 14-3-3 envolvida na adesão deste fungo às células epiteliais. Estas formam uma família de proteínas diméricas, ácidas e estão presentes em múltiplas isoformas em muitos organismos eucariotos. Com o intuito de se estudar sua funcionalidade em P. brasiliensis, pretendeu-se clonar, caracterizar e utilizar como hospedeiro do gene desta proteína a levedura Saccharomyces cerevisiae. Para tanto, as seqüências gênicas da adesina 14-3-3 de isolados de P. brasiliensis obtida pela clonagem do cDNA em vetores bacterianos foram utilizadas para obtenção de um homólogo funcional em S. cerevisiae. A capacidade do gene da 14-3-3 de P. brasiliensis ser um homólogo funcional, aderir e invadir as células epiteliais tratadas deve ser avaliada utilizando o modelo pré-existente de culturas celulares in vitro de linhagens humanas. Assim, neste estudo além da clonagem, expressão da 14-3-3 de Pb e obtenção do homólogo funcional do gene desta proteína em S. cerevisiae, foi iniciada... (Resumo completo, clicar acesso eletrônico abaixo)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a study of the applicability of adsorption isotherms, known as Langmuir and Freundlich isotherm, between the biosorptive interaction of yeast lyophilized Saccharomyces cerevisiae and textile dyes. To that end, we prepared stock solutions of the textile dyes Direct Red 23 and Direct Red 75 in the concentration of 1.000μg/mL and a yeast suspension at 2,5%. We did experiments for two cases, firstly for the case that we have a fix concentration of yeast at 0,500mg/mL and an variable concentration of dye range from40, 50, 60, 80 and 100μg/mL, then for the case that we fixed the concentration of dye at 100μg/mL and the yeast concentration was variable range from 0,250, 0,500, 0,750, 1,000, 1,250mg/mL. For the dye Direct Red 23 we did analysis in the pH 2,5, 4,5 and 6,5; for the Direct Red 75, we just did for the pH 2,5. We leave the dye solution in contact with the yeast for 2 hours at a constant temperature of 30°C and then centrifuged and analyzed the sample in a spectrophotometer and finally made and analysis of parameters for the removal and study of the isotherms. After the biosorption, was observed that for the Direct Red 23 in the pH 2,5 was needed 1,407mg/mL of yeast for total removal, while for the pH 4,5 was needed 8,806mg/mL and in pH 6,5 was 9,286mg/mL; for the Direct Red 75 in pH 2,5 was needed 1,337mg/mL. This difference can be explain by the adsorption isotherms, was observed that in the case when the yeast was fix when we had in a acid pH the behavior of the system was compatible with the Langmuir isotherm, and thus, an monolayer pattern. And that when we decrease the acidity of the medium the system became more compatible with a Freundlich isotherm, and thus, a multilayer pattern; for the case that the yeast was variable this is not much evident, however for the pH 2,5 she became compatible with a Langmuir isotherm... (Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reducionism method has helped in the clari cation of functioning of many biological process. However, such process are extremely complex and have emergent properties that can not be explained or even predicted by reducionism methods. To overcome these limits, researchers have been used a set of methods known as systems biology, a new area of biology aiming to understand the interactions between the multiple components of biological processes. These interactions can be represented by a mathematical object called graph or network, where the interacting elements are represented by a vertex and the interactions by edges that connect a pair of vertexes. Into graphs it is possible to nd subgraphs, occurring in complex networks at numbers that are signi cantly higher than those in randomized networks, they are de ned as motifs. As motifs in biological networks may represent the structural units of biological processess, their detection is important. Therefore, the aim of this present work was detect, count and classify motifs present in biological integrated networks of bacteria Escherichia coli and yeast Saccharomyces cere- visiae. For this purpose, we implemented codes in MathematicaR and Python environments for detecting, counting and classifying motifs in these networks. The composition and types of motifs detected in these integrated networks indicate that such networks are organized in three main bridged modules composed by motifs in which edges are all the same type. The connecting bridges are composed by motifs in which the types of edges are diferent