982 resultados para Leishmania vaccine development


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, analysis of the genomes of many organisms has received increasing international attention. The bulk of the effort to date has centred on the Human Genome Project and analysis of model organisms such as yeast, Drosophila and Caenorhabditis elegans. More recently, the revolution in genome sequencing and gene identification has begun to impact on infectious disease organisms. Initially, much of the effort was concentrated on prokaryotes, but small eukaryotic genomes, including the protozoan parasites Plasmodium, Toxoplasma and trypanosomatids (Leishmania, Trypanosoma brucei and T. cruzi), as well as some multicellular organisms, such as Brugia and Schistosoma, are benefiting from the technological advances of the genome era. These advances promise a radical new approach to the development of novel diagnostic tools, chemotherapeutic targets and vaccines for infectious disease organisms, as well as to the more detailed analysis of cell biology and function.Several networks or consortia linking laboratories around the world have been established to support these parasite genome projects[1] (for more information, see http://www.ebi.ac.uk/ parasites/paratable.html). Five of these networks were supported by an initiative launched in 1994 by the Specific Programme for Research and Tropical Diseases (TDR) of the WHO[2, 3, 4, 5, 6]. The Leishmania Genome Network (LGN) is one of these[3]. Its activities are reported at http://www.ebi.ac.uk/parasites/leish.html, and its current aim is to map and sequence the genome of Leishmania by the year 2002. All the mapping, hybridization and sequence data are also publicly available from LeishDB, an AceDB-based genome database (http://www.ebi.ac.uk/parasites/LGN/leissssoft.html).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For decades thimerosal has been used as a preservative in the candidate vaccine for cutaneous leishmaniasis, which was developed by Mayrink et al. The use of thimerosal in humans has been banned due to its mercury content. This study addresses the standardization of phenol as a new candidate vaccine preservative. We have found that the proteolytic activity was abolished when the test was conducted using the candidate vaccine added to merthiolate (MtVac) as well as to phenol (PhVac). The Montenegro's skin test conversion rates induced by MtVac and by PhVac was 68.06% and 85.9%, respectively, and these values were statistically significant (p < 0.05). The proliferative response of peripheral mononuclear blood cells shows that the stimulation index of mice immunized with both candidate vaccines was higher than the one in control animals (p < 0.05). The ability of the candidate vaccines to induce protection in C57BL/10 mice against a challenge with infective Leishmania amazonensis promastigotes was tested and the mice immunized with PhVac developed smaller lesions than the mice immunized with MtVac. Electrophoresis of phenol-preserved antigen revealed a number of proteins, which were better preserved in PhVac. These results do in fact encourage the use of phenol for preserving the immunogenic and biochemical properties of the candidate vaccine for cutaneous leishmaniasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development and Phase 3 testing of the most advanced malaria vaccine, RTS,S/AS01, indicates that malaria vaccine R&D is moving into a new phase. Field trials of several research malaria vaccines have also confirmed that it is possible to impact the host-parasite relationship through vaccine-induced immune responses to multiple antigenic targets using different platforms. Other approaches have been appropriately tested but turned out to be disappointing after clinical evaluation. As the malaria community considers the potential role of a first-generation malaria vaccine in malaria control efforts, it is an apposite time to carefully document terminated and ongoing malaria vaccine research projects so that lessons learned can be applied to increase the chances of success for second-generation malaria vaccines over the next 10 years. The most comprehensive resource of malaria vaccine projects is a spreadsheet compiled by WHO thanks to the input from funding agencies, sponsors and investigators worldwide. This spreadsheet, available from WHO's website, is known as "the rainbow table". By summarizing the published and some unpublished information available for each project on the rainbow table, the most comprehensive review of malaria vaccine projects to be published in the last several years is provided below.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinetoplastid membrane protein-11 (KMP-11), a protein present in all kinetoplastid protozoa, is considered a potential candidate for a leishmaniasis vaccine. A suitable leishmaniasis vaccine candidate molecule must be expressed in amastigotes, the infective stage for mammals. However, the expression of KMP-11 in Leishmania amastigotes has been a subject of controversy. We evaluated the expression of this molecule in logarithmic and stationary growth phase promastigotes, as well as in amastigotes, of Leishmania amazonensis by immunoblotting, flow cytometry and immunocytochemistry, using a monoclonal antibody against KMP-11. We found that KMP-11 is present in promastigotes and amastigotes. In both stages, the protein was found in association with membrane structures (at the cell surface, flagellar pocket and intracellular vesicles). More importantly, its surface expression is higher in amastigotes than in promastigotes and increases during metacyclogenesis. The increased expression of KMP-11 in metacyclic promastigotes, and especially in amastigotes, indicates a role for this molecule in the parasite relationship with the mammalian host. The presence of this molecule in amastigotes is consistent with the previously demonstrated immunoprotective capacity of vaccine prototypes based on the KMP-11-coding gene and the presence of humoral and cellular immune responses to KMP-11 in Leishmania-infected humans and animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protection against Fasciola hepatica in goats immunized with a synthetic recombinant antigen from Schistosoma mansoni fatty acid-binding protein 14 (rSm14) was investigated by assessing worm burdens, serum levels of hepatic enzymes, faecal egg count and hepatic damage, which was evaluated using gross and microscopic morphometric observation. The nature of the local immune response was assessed by examining the distribution of CD2+, CD4+, CD8+ and γ´+ T lymphocytes along with IgG+, IL-4+ and IFN-γ+ cells in the liver and hepatic lymph nodes (HLN). The goats used consisted of group 1 (unimmunized and uninfected), group 2 [infected control - immunized with Quillaia A (Quil A)] and group 3 (immunized with rSm14 in Quil A and infected), each containing seven animals. Immunization with rSm14 in Quil A adjuvant induced a reduction in gross hepatic lesions of 56.6% (p < 0.001) and reduced hepatic and HLN infiltration of CD2+, CD4+, CD8+ and γ´+ T lymphocytes as well as IL-4+ and IFN-γ+ cells (p < 0.05). This is the first report of caprine immunization against F. hepatica using a complete rSm14 molecule derived from S. mansoni. Immunization reduced hepatic damage and local inflammatory infiltration into the liver and HLN. However, considering that Quil A is not the preferential/first choice adjuvant for Sm14 immunization, further studies will be undertaken using the monophosphoryl lipid A-based family of adjuvants during clinical trials to facilitate anti-Fasciolavaccine development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated two vaccine candidates for their effectiveness in protecting BALB/c mice against Leishmania chagasiinfection. These immunogenic preparations were composed of Leishmania amazonensisor Leishmania braziliensisantigenic extracts in association with saponin adjuvant. Mice were given three subcutaneous doses of one of these vaccine candidates weekly for three weeks and four weeks later challenged with promastigotes of L. chagasiby intravenous injection. We observed that both vaccine candidates induced a significant reduction in the parasite load of the liver, while the L. amazonensisantigenic extract also stimulated a reduction in spleen parasite load. This protection was associated with a suppression of both interleukin (IL)-10 and IL-4 cytokines by spleen cells in response to L. chagasiantigen. No change was detected in the production of IFN-γ. Our data show that these immunogenic preparations reduce the type 2 immune response leading to the control of parasite replication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The EuroVacc 02 phase I trial has evaluated the safety and immunogenicity of a prime-boost regimen comprising recombinant DNA and the poxvirus vector NYVAC, both expressing a common immunogen consisting of Env, Gag, Pol, and Nef polypeptide domain from human immunodeficiency virus (HIV)-1 clade C isolate, CN54. 40 volunteers were randomized to receive DNA C or nothing on day 0 and at week 4, followed by NYVAC C at weeks 20 and 24. The primary immunogenicity endpoints were measured at weeks 26 and 28 by the quantification of T cell responses using the interferon gamma enzyme-linked immunospot assay. Our results indicate that the DNA C plus NYVAC C vaccine regimen was highly immunogenic, as indicated by the detection of T cell responses in 90% of vaccinees and was superior to responses induced by NYVAC C alone (33% of responders). The vaccine-induced T cell responses were (a) vigorous in the case of the env response (mean 480 spot-forming units/10(6) mononuclear cells at weeks 26/28), (b) polyfunctional for both CD4 and CD8 T cell responses, (c) broad (the average number of epitopes was 4.2 per responder), and (d) durable (T cell responses were present in 70% of vaccinees at week 72). The vaccine-induced T cell responses were strongest and most frequently directed against Env (91% of vaccines), but smaller responses against Gag-Pol-Nef were also observed in 48% of vaccinees. These results support the development of the poxvirus platform in the HIV vaccine field and the further clinical development of the DNA C plus NYVAC C vaccine regimen

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we have demonstrated the potential of two-dimensional electrophoresis (2DE)-based technologies as tools for characterization of the Leishmania proteome (the expressed protein complement of the genome). Standardized neutral range (pH 5-7) proteome maps of Leishmania (Viannia) guyanensis and Leishmania (Viannia) panamensis promastigotes were reproducibly generated by 2DE of soluble parasite extracts, which were prepared using lysis buffer containing urea and nonidet P-40 detergent. The Coomassie blue and silver nitrate staining systems both yielded good resolution and representation of protein spots, enabling the detection of approximately 800 and 1,500 distinct proteins, respectively. Several reference protein spots common to the proteomes of all parasite species/strains studied were isolated and identified by peptide mass spectrometry (LC-ES-MS/MS), and bioinformatics approaches as members of the heat shock protein family, ribosomal protein S12, kinetoplast membrane protein 11 and a hypothetical Leishmania-specific 13 kDa protein of unknown function. Immunoblotting of Leishmania protein maps using a monoclonal antibody resulted in the specific detection of the 81.4 kDa and 77.5 kDa subunits of paraflagellar rod proteins 1 and 2, respectively. Moreover, differences in protein expression profiles between distinct parasite clones were reproducibly detected through comparative proteome analyses of paired maps using image analysis software. These data illustrate the resolving power of 2DE-based proteome analysis. The production and basic characterization of good quality Leishmania proteome maps provides an essential first step towards comparative protein expression studies aimed at identifying the molecular determinants of parasite drug resistance and virulence, as well as discovering new drug and vaccine targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, PCR assays targeting different Leishmania heat-shock protein 70 gene (hsp70) regions, producing fragments ranging in size from 230-390 bp were developed and evaluated to determine their potential as a tool for the specific molecular diagnosis of cutaneous leishmaniasis (CL). A total of 70 Leishmania strains were analysed, including seven reference strains (RS) and 63 previously typed strains. Analysis of the RS indicated a specific region of 234 bp in the hsp70 gene as a valid target that was highly sensitive for detection of Leishmania species DNA with capacity of distinguishing all analyzed species, after polymerase chain reaction-restriction fragment length polymorfism (PCR-RFLP). This PCR assay was compared with other PCR targets used for the molecular diagnosis of leishmaniasis: hsp70 (1400-bp region), internal transcribed spacer (ITS)1 and glucose-6-phosphate dehydrogenase (G6pd). A good agreement among the methods was observed concerning the Leishmania species identification. Moreover, to evaluate the potential for molecular diagnosis, we compared the PCR targets hsp70-234 bp, ITS1, G6pd and mkDNA using a panel of 99 DNA samples from tissue fragments collected from patients with confirmed CL. Both PCR-hsp70-234 bp and PCR-ITS1 detected Leishmania DNA in more than 70% of the samples. However, using hsp70-234 bp PCR-RFLP, identification of all of the Leishmania species associated with CL in Brazil can be achieved employing a simpler and cheaper electrophoresis protocol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pentavalent antimonials such as meglumine antimoniate (MA) are the primary treatments for leishmaniasis, a complex disease caused by protozoan parasites of the genus Leishmania . Despite over 70 years of clinical use, their mechanisms of action, toxicity and pharmacokinetics have not been fully elucidated. Radiotracer studies performed on animals have the potential to play a major role in pharmaceutical development. The aims of this study were to prepare an antimony radiotracer by neutron irradiation of MA and to determine the biodistribution of MA in healthy and Leishmania (Leishmania) infantum chagasi-infected mice. MA (Glucantime(r)) was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes, 122Sb and 124Sb, with high radionuclidic purity and good specific activity. This irradiated compound presented anti-leishmanial activity similar to that of non-irradiated MA in both in vitro and in vivo evaluations. In the biodistribution studies, healthy mice showed higher uptake of antimony in the liver than infected mice and elimination occurred primarily through biliary excretion, with a small proportion of the drug excreted by the kidneys. The serum kinetic curve was bi-exponential, with two compartments: the central compartment and another compartment associated with drug excretion. Radiotracers, which can be easily produced by neutron irradiation, were demonstrated to be an interesting tool for answering several questions regarding antimonial pharmacokinetics and chemotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neutrophils are rapidly and massively recruited to the site of Leishmania inoculation, where they phagocytose the parasites, some of which are able to survive within these first host cells. Neutrophils can thus provide a transient safe shelter for the parasites, prior to their entry into macrophages where they will replicate. In addition, neutrophils release and synthesize rapidly several factors including cytokines and chemokines. The mechanism involved in their rapid recruitment to the site of parasite inoculation, as well as the putative consequences of their massive presence on the microenvironment of the focus of infection will be discussed in the context of the development of the Leishmania-specific immune response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fungal infections are emerging as a major problem in part due to high mortality associated with systemic infections, especially in the case of immunocompromised patients. With the development of new treatments for diseases such as cancer and the acquired immune deficiency syndrome pandemic, the number of immunosuppressed patients has increased and, as a consequence, also the number of invasive fungal infections has increased. Several studies have proposed new strategies for the development of effective fungal vaccines. In addition, better understanding of how the immune system works against fungal pathogens has improved the further development of these new vaccination strategies. As a result, some fungal vaccines have advanced through clinical trials. However, there are still many challenges that prevent the clinical development of fungal vaccines that can efficiently immunise subjects at risk of developing invasive fungal infections. In this review, we will discuss these new vaccination strategies and the challenges that they present. In the future with proper investments, fungal vaccines may soon become a reality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mice with homologous disruption of the gene coding for either the p35 subunit or the p40 subunit of interleukin-12 (IL-12) and derived from a strain genetically resistant to infection with Leishmania major have been used to study further the role of this cytokine in resistance to infection and the differentiation of functional CD4+ T cell subsets in vivo. Wild-type 129/Sv/Ev mice are resistant to infection with L. major showing only small lesions which resolve spontaneously within a few weeks and develop a type 1 CD4+ T cell response. In contrast, mice lacking bioactive IL-12 (IL-12p35-/- and IL-12p40-/-) developed large, progressing lesions. Whereas resistant mice were able to mount a delayed-type hypersensitivity (DTH) response to Leishmania antigen, susceptible BALB/c mice as well as IL-12-deficient 129/Sv/Ev mice did not show any DTH reaction. To characterize the functional phenotype of CD4+ T cells triggered in infected wild-type mice and IL-12-deficient mice, the expression of mRNA for interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) in purified CD4+ lymph node cells was analyzed. Wild-type 129/Sv/Ev mice showed high levels of mRNA for IFN-gamma and low levels of mRNA for IL-4 which is indicative of a Th1 response. In contrast, IL-12- deficient mice and susceptible BALB/c mice developed a strong Th2 response with high levels of IL-4 mRNA and low levels of IFN-gamma mRNA in CD4+ T cells. Similarly, lymph node cells from infected wild-type 129 mice produced predominantly IFN-gamma in response to stimulation with Leishmania antigen in vitro whereas lymph node cells from IL-12-deficient mice and susceptible BALB/c mice produced preferentially IL-4. Taken together, these results confirm in vivo the importance of IL-12 in induction of Th1 responses and protective immunity against L. major.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well established that Notch signaling plays a critical role at multiple stages of T cell development and activation. However, detailed analysis of the cellular and molecular events associated with Notch signaling in T cells is hampered by the lack of reagents that can unambiguously measure cell surface Notch receptor expression. Using novel rat mAbs directed against the extracellular domains of Notch1 and Notch2, we find that Notch1 is already highly expressed on common lymphoid precursors in the bone marrow and remains at high levels during intrathymic maturation of CD4(-)CD8(-) thymocytes. Notch1 is progressively down-regulated at the CD4(+)CD8(+) and mature CD4(+) or CD8(+) thymic stages and is expressed at low levels on peripheral T cells. Immunofluorescence staining of thymus cryosections further revealed a localization of Notch1(+)CD25(-) cells adjacent to the thymus capsule. Notch1 was up-regulated on peripheral T cells following activation in vitro with anti-CD3 mAbs or infection in vivo with lymphocytic chorio-meningitis virus or Leishmania major. In contrast to Notch1, Notch2 was expressed at intermediate levels on common lymphoid precursors and CD117(+) early intrathymic subsets, but disappeared completely at subsequent stages of T cell development. However, transient up-regulation of Notch2 was also observed on peripheral T cells following anti-CD3 stimulation. Collectively our novel mAbs reveal a dynamic regulation of Notch1 and Notch2 surface expression during T cell development and activation. Furthermore they provide an important resource for future analysis of Notch receptors in various tissues including the hematopoietic system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new strategy for the rapid identification of new malaria antigens based on protein structural motifs was previously described. We identified and evaluated the malaria vaccine potential of fragments of several malaria antigens containing α-helical coiled coil protein motifs. By taking advantage of the relatively short size of these structural fragments, we constructed different poly-epitopes in which 3 or 4 of these segments were joined together via a non-immunogenic linker. Only peptides that are targets of human antibodies with anti-parasite in vitro biological activities were incorporated. One of the constructs, P181, was well recognized by sera and peripheral blood mononuclear cells (PBMC) of adults living in malaria-endemic areas. Affinity purified antigen-specific human antibodies and sera from P181-immunized mice recognised native proteins on malaria-infected erythrocytes in both immunofluorescence and western blot assays. In addition, specific antibodies inhibited parasite development in an antibody dependent cellular inhibition (ADCI) assay. Naturally induced antigen-specific human antibodies were at high titers and associated with clinical protection from malaria in longitudinal follow-up studies in Senegal.