888 resultados para Learning-Management-System
Resumo:
The methodology “b-learning” is a new teaching scenario and it requires the creation, adaptation and application of new learning tools searching the assimilation of new collaborative competences. In this context, it is well known the knowledge spirals, the situational leadership and the informal learning. The knowledge spirals is a basic concept of the knowledge procedure and they are based on that the knowledge increases when a cycle of 4 phases is repeated successively.1) The knowledge is created (for instance, to have an idea); 2) The knowledge is decoded into a format to be easily transmitted; 3) The knowledge is modified to be easily comprehensive and it is used; 4) New knowledge is created. This new knowledge improves the previous one (step 1). Each cycle shows a step of a spiral staircase: by going up the staircase, more knowledge is created. On the other hand, the situational leadership is based on that each person has a maturity degree to develop a specific task and this maturity increases with the experience. Therefore, the teacher (leader) has to adapt the teaching style to the student (subordinate) requirements and in this way, the professional and personal development of the student will increase quickly by improving the results and satisfaction. This educational strategy, finally combined with the informal learning, and in particular the zone of proximal development, and using a learning content management system own in our University, gets a successful and well-evaluated learning activity in Master subjects focused on the collaborative activity of preparation and oral exhibition of short and specific topics affine to these subjects. Therefore, the teacher has a relevant and consultant role of the selected topic and his function is to guide and supervise the work, incorporating many times the previous works done in other courses, as a research tutor or more experienced student. Then, in this work, we show the academic results, grade of interactivity developed in these collaborative tasks, statistics and the satisfaction grade shown by our post-graduate students.
Resumo:
The construction industry has long been considered as highly fragmented and non-collaborative industry. This fragmentation sprouted from complex and unstructured traditional coordination processes and information exchanges amongst all parties involved in a construction project. This nature coupled with risk and uncertainty has pushed clients and their supply chain to search for new ways of improving their business process to deliver better quality and high performing product. This research will closely investigate the need to implement a Digital Nervous System (DNS), analogous to a biological nervous system, on the flow and management of digital information across the project lifecycle. This will be through direct examination of the key processes and information produced in a construction project and how a DNS can provide a well-integrated flow of digital information throughout the project lifecycle. This research will also investigate how a DNS can create a tight digital feedback loop that enables the organisation to sense, react and adapt to changing project conditions. A Digital Nervous System is a digital infrastructure that provides a well-integrated flow of digital information to the right part of the organisation at the right time. It provides the organisation with the relevant and up-to-date information it needs, for critical project issues, to aid in near real-time decision-making. Previous literature review and survey questionnaires were used in this research to collect and analyse data about information management problems of the industry – e.g. disruption and discontinuity of digital information flow due to interoperability issues, disintegration/fragmentation of the adopted digital solutions and paper-based transactions. Results analysis revealed efficient and effective information management requires the creation and implementation of a DNS.
Resumo:
In response to recent technological advances and the trend toward flexible learning in education, the authors examined the factors affecting student satisfaction with flexible online learning. The authors identified 2 key student attributes of student satisfaction: (a) positive perceptions of technology in terms of ease of access and use of online flexible learning material and (b) autonomous and innovative learning styles. The authors derived measures of perceptions of technology from research on the Technology Acceptance Model and used locus of control and innovative attitude as indicators of an autonomous and innovative learning mode. First-year students undertaking an introductory management course completed surveys at the beginning (n = 248) and at the end (n = 256) of course work. The authors analyzed the data by using structural equation modeling. Results suggest that student satisfaction is influenced by positive perceptions toward technology and an autonomous learning mode.
Resumo:
Original Paper European Journal of Information Systems (2001) 10, 135–146; doi:10.1057/palgrave.ejis.3000394 Organisational learning—a critical systems thinking discipline P Panagiotidis1,3 and J S Edwards2,4 1Deloitte and Touche, Athens, Greece 2Aston Business School, Aston University, Aston Triangle, Birmingham, B4 7ET, UK Correspondence: Dr J S Edwards, Aston Business School, Aston University, Aston Triangle, Birmingham, B4 7ET, UK. E-mail: j.s.edwards@aston.ac.uk 3Petros Panagiotidis is Manager responsible for the Process and Systems Integrity Services of Deloitte and Touche in Athens, Greece. He has a BSc in Business Administration and an MSc in Management Information Systems from Western International University, Phoenix, Arizona, USA; an MSc in Business Systems Analysis and Design from City University, London, UK; and a PhD degree from Aston University, Birmingham, UK. His doctorate was in Business Systems Analysis and Design. His principal interests now are in the ERP/DSS field, where he serves as project leader and project risk managment leader in the implementation of SAP and JD Edwards/Cognos in various major clients in the telecommunications and manufacturing sectors. In addition, he is responsible for the development and application of knowledge management systems and activity-based costing systems. 4John S Edwards is Senior Lecturer in Operational Research and Systems at Aston Business School, Birmingham, UK. He holds MA and PhD degrees (in mathematics and operational research respectively) from Cambridge University. His principal research interests are in knowledge management and decision support, especially methods and processes for system development. He has written more than 30 research papers on these topics, and two books, Building Knowledge-based Systems and Decision Making with Computers, both published by Pitman. Current research work includes the effect of scale of operations on knowledge management, interfacing expert systems with simulation models, process modelling in law and legal services, and a study of the use of artifical intelligence techniques in management accounting. Top of pageAbstract This paper deals with the application of critical systems thinking in the domain of organisational learning and knowledge management. Its viewpoint is that deep organisational learning only takes place when the business systems' stakeholders reflect on their actions and thus inquire about their purpose(s) in relation to the business system and the other stakeholders they perceive to exist. This is done by reflecting both on the sources of motivation and/or deception that are contained in their purpose, and also on the sources of collective motivation and/or deception that are contained in the business system's purpose. The development of an organisational information system that captures, manages and institutionalises meaningful information—a knowledge management system—cannot be separated from organisational learning practices, since it should be the result of these very practices. Although Senge's five disciplines provide a useful starting-point in looking at organisational learning, we argue for a critical systems approach, instead of an uncritical Systems Dynamics one that concentrates only on the organisational learning practices. We proceed to outline a methodology called Business Systems Purpose Analysis (BSPA) that offers a participatory structure for team and organisational learning, upon which the stakeholders can take legitimate action that is based on the force of the better argument. In addition, the organisational learning process in BSPA leads to the development of an intrinsically motivated information organisational system that allows for the institutionalisation of the learning process itself in the form of an organisational knowledge management system. This could be a specific application, or something as wide-ranging as an Enterprise Resource Planning (ERP) implementation. Examples of the use of BSPA in two ERP implementations are presented.
Resumo:
The International Cooperation Agency (identified in this article as IDEA) working in Colombia is one of the most important in Colombian society with programs that support gender rights, human rights, justice and peace, scholarships, aboriginal population, youth, afro descendants population, economic development in communities, and environmental development. The identified problem is based on the diversified offer of services, collaboration and social intervention which requires diverse groups of people with multiple agendas, ways to support their mandates, disciplines, and professional competences. Knowledge creation and the growth and sustainability of the organization can be in danger because of a silo culture and the resulting reduced leverage of the separate group capabilities. Organizational memory is generally formed by the tacit knowledge of the organization members, given the value of accumulated experience that this kind of social work implies. Its loss is therefore a strategic and operational risk when most problem interventions rely on direct work in the socio-economic field and living real experiences with communities. The knowledge management solution presented in this article starts first, with the identification of the people and groups concerned and the creation of a knowledge map as a means to strengthen the ties between organizational members; second, by introducing a content management system designed to support the documentation process and knowledge sharing process; and third, introducing a methodology for the adaptation of a Balanced Scorecard based on the knowledge management processes. These three main steps lead to a knowledge management “solution” that has been implemented in the organization, comprising three components: a knowledge management system, training support and promotion of cultural change.
Resumo:
This dissertation investigates the very important and current problem of modelling human expertise. This is an apparent issue in any computer system emulating human decision making. It is prominent in Clinical Decision Support Systems (CDSS) due to the complexity of the induction process and the vast number of parameters in most cases. Other issues such as human error and missing or incomplete data present further challenges. In this thesis, the Galatean Risk Screening Tool (GRiST) is used as an example of modelling clinical expertise and parameter elicitation. The tool is a mental health clinical record management system with a top layer of decision support capabilities. It is currently being deployed by several NHS mental health trusts across the UK. The aim of the research is to investigate the problem of parameter elicitation by inducing them from real clinical data rather than from the human experts who provided the decision model. The induced parameters provide an insight into both the data relationships and how experts make decisions themselves. The outcomes help further understand human decision making and, in particular, help GRiST provide more accurate emulations of risk judgements. Although the algorithms and methods presented in this dissertation are applied to GRiST, they can be adopted for other human knowledge engineering domains.
Resumo:
In recent years Web has become mainstream medium for communication and information dissemination. This paper presents approaches and methods for adaptive learning implementation, which are used in some contemporary web-interfaced Learning Management Systems (LMSs). The problem is not how to create electronic learning materials, but how to locate and utilize the available information in personalized way. Different attitudes to personalization are briefly described in section 1. The real personalization requires a user profile containing information about preferences, aims, and educational history to be stored and used by the system. These issues are considered in section 2. A method for development and design of adaptive learning content in terms of learning strategy system support is represented in section 3. Section 4 includes a set of innovative personalization services that are suggested by several very important research projects (SeLeNe project, ELENA project, etc.) dated from the last few years. This section also describes a model for role- and competency-based learning customization that uses Web Services approach. The last part presents how personalization techniques are implemented in Learning Grid-driven applications.
Resumo:
The purpose of this work is the development of database of the distributed information measurement and control system that implements methods of optical spectroscopy for plasma physics research and atomic collisions and provides remote access to information and hardware resources within the Intranet/Internet networks. The database is based on database management system Oracle9i. Client software was realized in Java language. The software was developed using Model View Controller architecture, which separates application data from graphical presentation components and input processing logic. The following graphical presentations were implemented: measurement of radiation spectra of beam and plasma objects, excitation function for non-elastic collisions of heavy particles and analysis of data acquired in preceding experiments. The graphical clients have the following functionality of the interaction with the database: browsing information on experiments of a certain type, searching for data with various criteria, and inserting the information about preceding experiments.
Resumo:
Due to vigorous globalisation and product proliferation in recent years, more waste has been produced by the soaring manufacturing activities. This has contributed to the significant need for an efficient waste management system to ensure, with all efforts, the waste is properly treated for recycling or disposed. This paper presents a Decision Support System (DSS) framework, based on Constraint Logic Programming (CLP), for the collection management of industrial waste (of all kinds) and discusses the potential employment of Radio-Frequency Identification Technology (RFID) to improve several critical procedures involved in managing waste collection. This paper also demonstrates a widely distributed and semi-structured network of waste producing enterprises (e.g. manufacturers) and waste processing enterprises (i.e. waste recycling/treatment stations) improving their operations planning by means of using the proposed DSS. The potential RFID applications to update and validate information in a continuous manner to bring value-added benefits to the waste collection business are also presented. © 2012 Inderscience Enterprises Ltd.
Resumo:
A felelős vállalatirányítás egyik stratégiai jelentőségű tényezője a vállalati szintű kockázatkezelés, mely napjaink egyik legnagyobb kihívást jelentő területe a vállalatvezetés számára. A hatékony vállalati kockázatkezelés nem valósulhat meg kizárólag az általános, nemzetközi és hazai szakirodalomban megfogalmazott kockázatkezelési alapelvek követése mentén, a kockázatkezelési rendszer kialakítása során figyelembe kell venni mind az iparági, mind az adott vállalatra jellemző sajátosságokat. Mindez különösen fontos egy olyan speciális tevékenységet folytató vállalatnál, mint a villamosenergia-ipari átviteli rendszerirányító társaság (transmission system operator, TSO). A cikkben a magyar villamosenergia-ipari átviteli rendszerirányító társasággal együttműködésben készített kutatás keretében előálló olyan komplex elméleti és gyakorlati keretrendszert mutatnak be a szerzők, mely alapján az átviteli rendszerirányító társaság számára kialakítottak egy új, területenként egységes kockázatkezelési módszertant (fókuszban a kockázatok azonosításának és számszerűsítésének módszertani lépéseivel), mely alkalmas a vállalati szintű kockázati kitettség meghatározására. _______ This study handles one of today’s most challenging areas of enterprise management: the development and introduction of an integrated and efficient risk management system. For companies operating in specific network industries with a dominant market share and a key role in the national economy, such as electricity TSO’s, risk management is of stressed importance. The study introduces an innovative, mathematically and statistically grounded as well as economically reasoned management approach for the identification, individual effect calculation and summation of risk factors. Every building block is customized for the organizational structure and operating environment of the TSO. While the identification phase guarantees all-inclusivity, the calculation phase incorporates expert techniques and Monte Carlo simulation and the summation phase presents an expected combined distribution and value effect of risks on the company’s profit lines based on the previously undiscovered correlations between individual risk factors.
Resumo:
The selected publications are focused on the relations between users, eGames and the educational context, and how they interact together, so that both learning and user performance are improved through feedback provision. A key part of this analysis is the identification of behavioural, anthropological patterns, so that users can be clustered based on their actions, and the steps taken in the system (e.g. social network, online community, or virtual campus). In doing so, we can analyse large data sets of information made by a broad user sample,which will provide more accurate statistical reports and readings. Furthermore, this research is focused on how users can be clustered based on individual and group behaviour, so that a personalized support through feedback is provided, and the personal learning process is improved as well as the group interaction. We take inputs from every person and from the group they belong to, cluster the contributions, find behavioural patterns and provide personalized feedback to the individual and the group, based on personal and group findings. And we do all this in the context of educational games integrated in learning communities and learning management systems. To carry out this research we design a set of research questions along the 10-year published work presented in this thesis. We ask if the users can be clustered together based on the inputs provided by them and their groups; if and how these data are useful to improve the learner performance and the group interaction; if and how feedback becomes a useful tool for such pedagogical goal; if and how eGames become a powerful context to deploy the pedagogical methodology and the various research methods and activities that make use of that feedback to encourage learning and interaction; if and how a game design and a learning design must be defined and implemented to achieve these objectives, and to facilitate the productive authoring and integration of eGames in pedagogical contexts and frameworks. We conclude that educational games are a resourceful tool to provide a user experience towards a better personalized learning performance and an enhance group interaction along the way. To do so, eGames, while integrated in an educational context, must follow a specific set of user and technical requirements, so that the playful context supports the pedagogical model underneath. We also conclude that, while playing, users can be clustered based on their personal behaviour and interaction with others, thanks to the pattern identification. Based on this information, a set of recommendations are provided Digital Anthropology and educational eGames 6 /216 to the user and the group in the form of personalized feedback, timely managed for an optimum impact on learning performance and group interaction level. In this research, Digital Anthropology is introduced as a concept at a late stage to provide a backbone across various academic fields including: Social Science, Cognitive Science, Behavioural Science, Educational games and, of course, Technology-enhance learning. Although just recently described as an evolution of traditional anthropology, this approach to digital behaviour and social structure facilitates the understanding amongst fields and a comprehensive view towards a combined approach. This research takes forward the already existing work and published research onusers and eGames for learning, and turns the focus onto the next step — the clustering of users based on their behaviour and offering proper, personalized feedback to the user based on that clustering, rather than just on isolated inputs from every user. Indeed, this pattern recognition in the described context of eGames in educational contexts, and towards the presented aim of personalized counselling to the user and the group through feedback, is something that has not been accomplished before.
Resumo:
Utilization of renewable energy sources and energy storage systems is increasing with fostering new policies on energy industries. However, the increase of distributed generation hinders the reliability of power systems. In order to stabilize them, a virtual power plant emerges as a novel power grid management system. The VPP has a role to make a participation of different distributed energy resources and energy storage systems. This paper defines core technology of the VPP which are demand response and ancillary service concerning about Korea, America and Europe cases. It also suggests application solutions of the VPP to V2G market for restructuring national power industries in Korea.
Resumo:
A implementação de sistemas de gestão da qualidade na área da educação e formação permite reforçar e consolidar as organizações que atuam num mercado cada vez mais competitivo, permitindo-lhes satisfazer, numa base permanente e sistemática, as expetativas dos clientes através do fornecimento de produtos de formação de melhor qualidade. Neste contexto, o objetivo deste estudo é explorar a temática dos sistemas de gestão da qualidade ao nível do setor de educação. Em específico pretende-se efetuar uma revisão de literatura sobre qualidade, formação e ensino à distância;analisar normas, projetos e iniciativas em matéria de ensino à distância e implementar um Sistema de Gestão da Formação, de acordo com a NP 4512, numa unidade de e-learning. A metodologia adotada foi investigação–ação e centrou-se no levantamento bibliográfico e na aplicação dos conceitos num contexto específico de um organização de ensino. Foi escolhida a unidade de e-learning do IPP (e-IPP) como contexto do estudo por ser uma unidade de ensino superior. Os principais resultados obtidos são: (1) maior conhecimento das normas projetos e iniciativas em matéria de ensino à distância a nível nacional e europeu; (2) análise detalhada da recente norma portuguesa NP 4512; (3) elaboração da documentação associada ao Sistema de Gestão da Formação (SGF) na unidade e-IPP, em específico, identificação e monitorização dos processos, descrição dos procedimentos obrigatórios e elaboração do manual do SGF. Como principal limitação deste estudo destaca-se a implementação parcial do sistema de gestão da formação na unidade e-IPP, devido à falta de tempo e à falta de maturidade da unidade e-IPP.
Resumo:
Early water resources modeling efforts were aimed mostly at representing hydrologic processes, but the need for interdisciplinary studies has led to increasing complexity and integration of environmental, social, and economic functions. The gradual shift from merely employing engineering-based simulation models to applying more holistic frameworks is an indicator of promising changes in the traditional paradigm for the application of water resources models, supporting more sustainable management decisions. This dissertation contributes to application of a quantitative-qualitative framework for sustainable water resources management using system dynamics simulation, as well as environmental systems analysis techniques to provide insights for water quality management in the Great Lakes basin. The traditional linear thinking paradigm lacks the mental and organizational framework for sustainable development trajectories, and may lead to quick-fix solutions that fail to address key drivers of water resources problems. To facilitate holistic analysis of water resources systems, systems thinking seeks to understand interactions among the subsystems. System dynamics provides a suitable framework for operationalizing systems thinking and its application to water resources problems by offering useful qualitative tools such as causal loop diagrams (CLD), stock-and-flow diagrams (SFD), and system archetypes. The approach provides a high-level quantitative-qualitative modeling framework for "big-picture" understanding of water resources systems, stakeholder participation, policy analysis, and strategic decision making. While quantitative modeling using extensive computer simulations and optimization is still very important and needed for policy screening, qualitative system dynamics models can improve understanding of general trends and the root causes of problems, and thus promote sustainable water resources decision making. Within the system dynamics framework, a growth and underinvestment (G&U) system archetype governing Lake Allegan's eutrophication problem was hypothesized to explain the system's problematic behavior and identify policy leverage points for mitigation. A system dynamics simulation model was developed to characterize the lake's recovery from its hypereutrophic state and assess a number of proposed total maximum daily load (TMDL) reduction policies, including phosphorus load reductions from point sources (PS) and non-point sources (NPS). It was shown that, for a TMDL plan to be effective, it should be considered a component of a continuous sustainability process, which considers the functionality of dynamic feedback relationships between socio-economic growth, land use change, and environmental conditions. Furthermore, a high-level simulation-optimization framework was developed to guide watershed scale BMP implementation in the Kalamazoo watershed. Agricultural BMPs should be given priority in the watershed in order to facilitate cost-efficient attainment of the Lake Allegan's TP concentration target. However, without adequate support policies, agricultural BMP implementation may adversely affect the agricultural producers. Results from a case study of the Maumee River basin show that coordinated BMP implementation across upstream and downstream watersheds can significantly improve cost efficiency of TP load abatement.
Resumo:
This thesis presents a study of the Grid data access patterns in distributed analysis in the CMS experiment at the LHC accelerator. This study ranges from the deep analysis of the historical patterns of access to the most relevant data types in CMS, to the exploitation of a supervised Machine Learning classification system to set-up a machinery able to eventually predict future data access patterns - i.e. the so-called dataset “popularity” of the CMS datasets on the Grid - with focus on specific data types. All the CMS workflows run on the Worldwide LHC Computing Grid (WCG) computing centers (Tiers), and in particular the distributed analysis systems sustains hundreds of users and applications submitted every day. These applications (or “jobs”) access different data types hosted on disk storage systems at a large set of WLCG Tiers. The detailed study of how this data is accessed, in terms of data types, hosting Tiers, and different time periods, allows to gain precious insight on storage occupancy over time and different access patterns, and ultimately to extract suggested actions based on this information (e.g. targetted disk clean-up and/or data replication). In this sense, the application of Machine Learning techniques allows to learn from past data and to gain predictability potential for the future CMS data access patterns. Chapter 1 provides an introduction to High Energy Physics at the LHC. Chapter 2 describes the CMS Computing Model, with special focus on the data management sector, also discussing the concept of dataset popularity. Chapter 3 describes the study of CMS data access patterns with different depth levels. Chapter 4 offers a brief introduction to basic machine learning concepts and gives an introduction to its application in CMS and discuss the results obtained by using this approach in the context of this thesis.