605 resultados para Landwirtschaft
Resumo:
In face of the global food crisis of 2007-2008, severe concerns arose about how developing countries would be affected by the extreme short-term fluctuations in international commodity prices. We examine the effects of the crisis on Bolivia, one of the poorest countries of the Americas. We focus on the effectiveness of the domestic policy interventions in preventing spillovers of the development of international food prices to domestic markets. Using a cointegration model, we study price interdependencies of wheat flour, sunflower oil and poultry. The analysis suggests that the policy measures taken had little effect on food security during the food crisis. Throughout the entire period, perfect price transmission between the Bolivian poultry and sunflower oil markets and the respective international reference markets existed. Bolivian prices were determined by international prices and the policy interventions in the markets of these two commodities were not found to have had an effect. The government's large-scale wheat flour imports did not shield Bolivian consumers from the shocks of international prices.
Resumo:
The understanding of poverty dynamics is crucial for the design of appropriate poverty reduction strategies. Taking the case of Central Sulawesi, we investigate the determinants of both chronic and transitory poverty using data from 264 randomly selected households interviewed in 2005 and 2007. Regarding the US 1$/day poverty line, the headcount index declined from 19.3% in 2005 to 18.2% in 2007. However, we observed an increasing number of people living on less than US 2$/day expressed in purchasing power parity (PPP). The results of the estimated multinomial logit model applied in this study indicate that a lack of non-agricultural employment opportunities and low endowment of social capital are major determinants of chronic as well as transitory poverty in this province of Indonesia. These results are used to draw policy conclusions with respect to the alleviation of transitory and chronic poverty in Central Sulawesi.
Resumo:
Due to growing land scarcity and lack of nutrient inputs, African farmers switched from shifting cultivation to continuous cropping and extended crop area by bringing fragile lands such as river banks and hill slopes into production. This accelerated soil fertility decline caused by erosion, harvesting and insufficient nutrient replenishment. We explored the feasibility to reduce nutrient depletion by increasing nutrient utilization efficiencies, while diversifying and increasing food production through the development of integrated aquaculture – agriculture (IAA). Considering the climatic conditions prevailing in Kenyan highlands, aquaculture production scenarios were ideotyped per agro-ecological zone. These aquaculture production scenarios were integrated into existing NUTrient MONitoring (NUTMON) farm survey data for the area. The nutrient balances and flows of the resulting IAA-systems were compared to present land use. The effects of IAA development on nutrient depletion and total food production were evaluated. With the development of IAA systems, nutrient depletion rates dropped by 23–35%, agricultural production increased by 2–26% and overall farm food production increased by 22–70%. The study demonstrates that from a bio-physical point of view, the development of IAA-systems in Africa is technically possible and could raise soil fertility and total farm production. Further studies that evaluate the economic feasibility and impacts on the livelihood of farming households are recommended.
Resumo:
The field experiments were conducted to compare the alternate partial root-zone irrigation (APRI) with and without black plastic mulch (BPM) with full root-zone irrigation (FRI) in furrow-irrigated okra (Abelmoschus esculentus L. Moench) at Bhubaneswar, India. APRI means that one of the two neighbouring furrows was alternately irrigated during consecutive watering. FRI was the conventional method where every furrow was irrigated during each watering. The used irrigation levels were 25% available soil moisture depletion (ASMD), 50% ASMD, and 75% ASMD. The plant growth and yield parameters were observed to be significantly (p < 0.05) higher with frequent irrigation (at 25% ASMD) under all irrigation strategies. However, APRI + BPM produced the maximum plant growth and yield using 22% and 56% less water over APRI without BPM and FRI, respectively. The highest pod yield (10025 kg ha^-1) was produced under APRI at 25% ASMD + BPM, which was statistically at par with the pod yield under APRI at 50% ASMD + BPM. Irrigation water use efficiency (IWUE), which indicates the pod yield per unit quantity of irrigation water, was estimated to be highest (12.3 kg m^-3) under APRI at 50% ASMD + BPM, followed by APRI at 25% ASMD + BPM. Moreover, the treatment APRI at 50% ASMD + BPM was found economically superior to other treatments, generating more net return (US $ 952 ha^-1) with higher benefit–cost ratio (1.70).
Resumo:
Many efforts are undertaken for sustaining urban agriculture in African cities. This study therefore investigated nutrient management practices in urban vegetable gardens of Bobo Dioulasso, Burkina Faso (West Africa). Nitrogen (N), phosphorus (P), potassium (K), and carbon (C) fluxes were quantified and nutrient balances calculated for three gardens representing the typical commercial gardening + field crops and livestock system (cGCL) and three gardens representing the commercial gardening + semi-commercial field crop system (cGscC). Nutrient and C balances were similarly positive in both production systems reaching annual averages of 688 kg N ha -1, 251 kg P ha-1 yr-1, 189 kg K ha-1, and 31 t C ha-1. Inputs in all gardens exceeded the amounts recommended by the extension service. Gaseous emissions of N and C represented important pathways of N and C losses. The highest emission rates occurred during the hottest periods of the day and the peaks were observed after fertilizer applications. Management recommendations should be geared towards increasing nutrient use efficiencies by better tailoring nutrient availability to crop demand and adjusted fertilization techniques to mitigate N losses.
Resumo:
Durch die vermehrte Nachfrage von Biomöhren im Lebensmitteleinzelhandel ist die Anbaufläche ökologisch erzeugter Möhren in den letzten zehn Jahren deutlich angestiegen. Der Anbau konzentriert sich auf bestimmte Regionen und erfolgte damit zunehmend auf großen Schlägen in enger räumlicher und zeitlicher Abfolge. Mit der steigenden Wirtspflanzenpräsenz steigt auch der Befallsdruck durch die Möhrenfliege. Während der Schädling im konventionellen Anbau mit Insektiziden kontrolliert wird, stehen dem Ökologischen Landbau bisher keine direkten Regulative zur Verfügung. Ziel der Untersuchungen war es, unter den Praxisbedingungen des ökologischen Möhrenanbaus einzelbetriebliche und überregionale Muster beteiligter Risikofaktoren im Befallsgeschehen zu identifizieren und so Möglichkeiten einer verbesserten Prävention und Regulation aufzuzeigen. Über einen Zeitraum von drei Jahren wurden auf fünf Betrieben in Niedersachsen und Hessen umfangreiche Felddaten erhoben und diese unter Verwendung von GIS – Software und dem Simulationsmodell SWAT analysiert. Untersuchte Einflussgrößen umfassten (1) die Distanz zu vorjährigen Möhrenfeldern, (2) die zeitliche Möhrenanbauperiode, (3) Vegetationselemente und (4) der experimentelle Einsatz von Fangpflanzen zur Unterdrückung der Fliegenentwicklung. Unter der Berücksichtigung deutlicher einzelbetrieblicher Unterschiede sind die wichtigsten Ergebnisse der Studie wie folgt zu benennen: (1) Auf Betrieben mit Befall im zurückliegenden Anbaujahr zeigte sich die Distanz zu vorjährigen Möhrenfeldern als der wichtigste Risikofaktor. Das Ausbreitungsverhalten der 1. Generation Möhrenfliege erwies sich zudem als situationsgebunden anpassungsfähig. Fliegensumme und Befall waren jeweils in dem zu Vorjahresflächen nächstgelegen Feld am größten, während jeweils dahinter liegende Möhrenschläge entsprechend weniger Fliegenzahlen und Befall auswiesen. Aus den Ergebnissen wird als vorrangige Verbreitungskapazität der 1. Generation Möhrenfliegen innerhalb von 1000 m abgeleitet. (2) Betriebe mit kontinuierlicher Möhren - Anbaubauperiode (ca. April – Oktober), die langfristig die Entwicklung sowohl der 1. als auch der 2. Generation Fliegen unterstützten, verzeichneten stärkere Fliegenprobleme. Hinsichtlich einer verbesserten Prävention wird empfohlen mit einer strikten räumlichen Trennung früher und später Sätze ein Aufschaukeln zwischen den Generationen zu vermeiden. (3) Der Einfluss der Vegetation ließ sich weniger eindeutig interpretieren. Einzelbetriebliche Hinweise, dass Kleingehölze (Hecken und Bäume) im Radius zwischen aktueller und vorjähriger Möhrenfläche die Befallswahrscheinlichkeit erhöhen, konnten mit einem berechneten Gesamtmaß für die regionale holzige Vegetation nicht bestätigt werden. Der großräumigen holzigen Vegetation wird im Vergleich zur Feldrandvegetation daher beim Befallsgeschehen eine geringe Bedeutung zugeschrieben. (4) Drei Meter (vier Dämme) breiter Möhren – Fangstreifen auf den vorjährigen Möhrenfeldern eignen sich bereits ab dem Keimblattstadium, um erhebliches Befallspotential zu binden. Eine mechanische Entfernung der Fangpflanzen (Grubbern) mitsamt dem Befallspotential erzielte in 2008 eine 100 %-ige Unterdrückung der Möhrenfliegenentwicklung, in 2009 jedoch nur zu maximal 41 %. Als mögliche Synthese der Ergebnisse zur Ausbreitung der Möhrenfliegen im Frühjahr und zur zeitlichen Koinzidenz mit der Möhrenentwicklung wird als Empfehlung diskutiert, mit Hilfe einer angepassten Flächenwahl die Fliegenausbreitung räumlich an frühen Sätzen zu binden, um entsprechend befallsarme Regionen für entfernt liegende späte (empfindlichere) Möhrensätze zu schaffen.
Resumo:
The use of renewable primary products as co-substrate or single substrate for biogas production has increased consistently over the last few years. Maize silage is the preferential energy crop used for fermentation due to its high methane (CH4) yield per hectare. Equally, the by-product, namely biogas slurry (BS), is used with increasing frequency as organic fertilizer to return nutrients to the soil and to maintain or increase the organic matter stocks and soil fertility. Studies concerning the application of energy crop-derived BS on the carbon (C) and nitrogen (N) mineralization dynamics are scarce. Thus, this thesis focused on the following objectives: I) The determination of the effects caused by rainfall patterns on the C and N dynamics from two contrasting organic fertilizers, namely BS from maize silage and composted cattle manure (CM), by monitoring emissions of nitrous oxide (N2O), carbon dioxide (CO2) and CH4 as well as leaching losses of C and N. II) The investigation of the impact of differences in soil moisture content after the application of BS and temperature on gaseous emissions (CO2, N2O and CH4) and leaching of C and N compounds. III) A comparison of BS properties obtained from biogas plants with different substrate inputs and operating parameters and their effect on C and N dynamics after application to differently textured soils with varying application rates and water contents. For the objectives I) and II) two experiments (experiment I and II) using undisturbed soil cores of a Haplic Luvisol were carried out. Objective III) was studied on a third experiment (experiment III) with disturbed soil samples. During experiment I three rainfall patterns were implemented including constant irrigation, continuous irrigation with periodic heavy rainfall events, and partial drying with rewetting periods. Biogas slurry and CM were applied at a rate of 100 kg N ha-1. During experiment II constant irrigation and an irrigation pattern with partial drying with rewetting periods were carried out at 13.5°C and 23.5°C. The application of BS took place either directly before a rewetting period or one week after the rewetting period stopped. Experiment III included two soils of different texture which were mixed with ten BS’s originating from ten different biogas plants. Treatments included low, medium and high BS-N application rates and water contents ranging from 50% to 100% of water holding capacity (WHC). Experiment I and II showed that after the application of BS cumulative N2O emissions were 4 times (162 mg N2O-N m-2) higher compared to the application of CM caused by a higher content of mineral N (Nmin) in the form of ammonium (NH4+) in the BS. The cumulative emissions of CO2, however, were on the same level for both fertilizers indicating similar amounts of readily available C after composting and fermentation of organic material. Leaching losses occurred predominantly in the mineral form of nitrate (NO3-) and were higher in BS amended soils (9 mg NO3--N m-2) compared to CM amended soils (5 mg NO3--N m-2). The rainfall pattern in experiment I and II merely affected the temporal production of C and N emissions resulting in reduced CO2 and enhanced N2O emissions during stronger irrigation events, but showed no effect on the cumulative emissions. Overall, a significant increase of CH4 consumption under inconstant irrigation was found. The time of fertilization had no effect on the overall C and N dynamics. Increasing temperature from 13.5°C to 23.5°C enhanced the CO2 and N2O emissions by a factor of 1.7 and 3.7, respectively. Due to the increased microbial activity with increasing temperature soil respiration was enhanced. This led to decreasing oxygen (O2) contents which in turn promoted denitrification in soil due to the extension of anaerobic microsites. Leaching losses of NO3- were also significantly affected by increasing temperature whereas the consumption of CH4 was not affected. The third experiment showed that the input materials of biogas plants affected the properties of the resulting BS. In particular the contents of DM and NH4+ were determined by the amount of added plant biomass and excrement-based biomass, respectively. Correlations between BS properties and CO2 or N2O emissions were not detected. Solely the ammonia (NH3) emissions showed a positive correlation with NH4+ content in BS as well as a negative correlation with the total C (Ct) content. The BS-N application rates affected the relative CO2 emissions (% of C supplied with BS) when applied to silty soil as well as the relative N2O emissions (% of N supplied with BS) when applied to sandy soil. The impacts on the C and N dynamics induced by BS application were exceeded by the differences induced by soil texture. Presumably, due to the higher clay content in silty soils, organic matter was stabilized by organo-mineral interactions and NH4+ was adsorbed at the cation exchange sites. Different water contents induced highest CO2 emissions and therefore optimal conditions for microbial activity at 75% of WHC in both soils. Cumulative nitrification was also highest at 75% and 50% of WHC whereas the relative N2O emissions increased with water content and showed higher N2O losses in sandy soils. In summary it can be stated that the findings of the present thesis confirmed the high fertilizer value of BS’s, caused by high concentrations of NH4+ and labile organic compounds such as readily available carbon. These attributes of BS’s are to a great extent independent of the input materials of biogas plants. However, considerably gaseous and leaching losses of N may occur especially at high moisture contents. The emissions of N2O after field application corresponded with those of animal slurries.
Resumo:
Als Kräuter werden alle krautigen Pflanzen, die nicht zu den Gehölzen und zu den Gräsern zählen, bezeichnet. Sie erfüllen wichtige Funktionen bei der Förderung von Insekten und der Ästhetik von Landschaften und tragen zur Verbesserung des Grundfutters landwirtschaftlicher Nutztiere bei. Ansaaten von Kräutern in geschlossene Vegetationsdecken und bei Neuanlagen sind durch deren langandauernde Entwicklungsphasen sehr schwierig zu realisieren. Eine innovative Option zur Etablierung in Grünlandbeständen kann die Herstellung von Kräutersoden sein. Ziel dieser Arbeit ist die Untersuchung der Eignung von Kräutern zur Sodenproduktion. Durch unterschiedliche Merkmale von Kräutern und Gräsern können Probleme bei der Entwicklung von Kräutersoden auftreten. In dieser Arbeit sind verschiedene Anbauversuche mit Wurzelkürzungen und Ertragsbestimmungen sowie Sodenverpflanzungen, die Ermittlung eines optimalen Trägermaterials und Untersuchungen zur Entwicklung eines Sodenschneidersystems durchgeführt worden. Wurzelkürzungen an Kräutern ergaben, dass die Bildung der Gesamtwurzelmasse, der Wurzelneubildung und der Masse des Oberbewuchses bei einzelnen Kräutern nur z.T. im Zusammenhang mit der Schnitttiefe stehen und die Entwicklungsstadien der Kräuter keine signifikanten Unterschiede aufzeigen. Hieraus ergibt sich, dass ein Wurzelschnitt generell möglich ist, jedoch verschiedenen Arte von Kräutern unterschiedlich stark auf diesen reagieren. Zu den Entwicklungsstadien, zum Ertrag des Bewuchses und zum Anwurzelungsverhalten von Kräutersoden können in Abhängigkeit vom Vorzuchtsort und im Vergleich zu Fertigrasen keine abschließenden Aussagen getroffen werden. Es besteht daher weiterer Forschungsbedarf. Ein kombinierter Anbau mit Untergräsern eignet sich durch die wuchsverdrängende Wirkung nicht zur Stabilisierung von Kräutersoden. Es konnte aber gezeigt werden, dass Trägermaterial aus Kokosfaser durch die hohe Zugfestigkeit und der Langlebigkeit des Materials geeignet ist. Demzufolge könnte es bei der Produktion von Kräutersoden eine wichtige Rolle spielen. Das Design von Sodenschneidertechnik aus dem Fertigrasenanbau kann nicht auf die Erzeugung von Kräutersoden übertragen werden, da Kräuter andere Wurzelmerkmale als Gräser haben und sich daher spezielle Anforderungen ergeben. Für einen erfolgreichen Schälvorgang von Kräutersoden bedarf es der Entwicklung einer speziell angepassten Technik. Denkbar währe die Verwendung oszillierender Schneideorgane, welche den Schneidevorgang besser ermöglichen könnten. Dadurch, dass ein flacher Wurzelschnitt bei Kräutern erfolgen kann, ist eine Erzeugung von Kräutersoden möglich. Aufgrund von morphologischen Unterschieden zwischen Kräutern und Gräsern unterscheiden sich diese in ihren Anforderungsprofilen, die Techniken der Fertigrasenproduktion können somit nicht direkt auf eine Kräutersodenproduktion übertragen werden. Mit dieser Arbeit fand ein erster Ansatz zur technischen Entwicklung einer Kräutersodenproduktion statt. Die Versuche haben gezeigt, dass noch viele Fragen bei der Entwicklung von Kräutersoden offen sind.
Resumo:
One of the major problems facing aquaculture is the inadequate supply of fish oil mostly used for fish feed manufacturing. The continued growth in aquaculture production cannot depend on this finite feed resources, therefore, it is imperative that cheap and readily available substitutes that do not compromise fish growth and fillet quality be found. To achieve this, a 12-week feeding trial with Heterobranchus longifilis fed diets differing in lipid source was conducted. Diets were supplemented with 6% lipid as fish oil, soybean oil, palm oil, coconut oil, groundnut oil and melon seed oil. Triplicate groups of 20 H. longifilis were fed the experimental diets two times a day to apparent satiation, over 84 days. Growth, digestibility, and muscle fatty acid profile were measured to assess diet effects. At the end of the study, survival, feed intake and hepatosomatic index were similar for fish fed experimental diets. However, weight gain, SGR and FCR of fish fed soybean oil-based diet was significantly reduced. Apparent nutrient digestibility coefficients were significantly lower in fish fed soybean, coconut and groundnut oil-based diets. Fillet and hepatic fatty acid compositions differed and reflected the fatty acid compositions of the diets. Docosahexaenoic acid (22:6n-3), 20:5n-3 and 20:4n-6 were conserved in vegetable oils-based diets fed fish possibly due to synthesis of HUFA from 18:3n-3 and 18:4n-6. Palm oil diet was the least expensive, and had the best economic conversion ratio. The use of vegetable oils in the diets had positive effect on growth and fillet composition of H. longifilis.
Resumo:
Food farming in Oyo North, Nigeria is characterised by an increasing use of Intermediary Mode of Transportation (IMT) to ease inputs and outputs mobility and farm access. To assess the influence on food farmer’s productivity, a random sample of 230 respondents was selected and data collected on their socio-economic and farm specific characteristics. Descriptive statistics, Herfindhal Index and Technical Efficiency Approach were used to analyse the data. The results indicate that majority of food farmers were in their middle age with mean age of 50 years and most of them used one plot at a location between 5 and 10km to their village of residence. They acquired land by inheritance and practiced intensive crop diversification as risk management strategy. The transportation modes used in addition to walking include bicycle, motorcycle, and car with increasing trend in the use of motorcycle. The mean Technical Efficiency (TE) of food farmers was 0.82 with significant inefficiency effects. The inefficiency analysis indicates positive effect of distance, crop diversification and un-tarred type of road on farmer’s productivity, while poor level of education among farmers, use of bicycle; trekking and weekly working time negatively affect farmer’s efficiency. The negative effect of trekking and use of bicycle and the excess working time suggest the adoption of more IMT of motorized type to optimize farming time and increase farmer’s productivity.
Resumo:
In comparison with mixed forest stands, the cultivation of pure plantations in Vietnam entails serious ecological consequences such as loss of biodiversity and higher rate of soil erosion. The economic evaluation is elaborated between pure plantations and mixed forests where the fast-growing tree species are mixed with slow growing tree species which are planted in stripes separating the segments with fast-growing tree species (Acacia sp.). For the evaluation, the input values were used from local costs of goods, services and labour. The results show that the internal rate of return is the highest in the case of pure plantation in comparison with mixed forests – 86% to 77%(first planting pattern: Acacia sp. + noble hardwood species) and 54% (second planting pattern: Acacia + Dipterocarpus sp. + Sindora sp.). The average profit per hectare and year is almost five times higher in the case of mixed stands. The first planting pattern reaches 2,650 $, the second planting pattern 2,280 $ and the pure acacia plantation only 460 $. From an economic point of view, the cultivation of mixed forests that corresponds to the principles of sustainable forestry generates a good economical profit while maintaining habitat complexity and biodiversity.
Resumo:
Food safety management systems (FSMSs) and the scrutinisation of the food safety practices that are intended for adoption on the firm level both offer strategic value to the dried fig sector. This study aims to prove the hypothesis that export orientation is a major motivating force for the adoption of food safety systems in the Turkish dried fig firms. Data were obtained from 91 dried fig firms located in Aydin, Turkey. Interviews were carried out with firms’ managers/owners using a face-to-face questionnaire designed from May to August of 2010. While 36.3 percent of the interviewed firms had adopted one or more systems, the rest had no certification. A binomial logistic econometric model was employed. The parameters that influenced this decision included contractual agreements with other firms, implementation of good practices by the dried fig farmers, export orientation and cost-benefit ratio. Interestingly, the rest of the indicators employed had no statistically significant effect on adoption behaviour. This paper focusses on the export orientation parameter directly in order to test the validity of the main research hypothesis. The estimated marginal effect suggests that when dried fig firms are export-oriented, the probability that these firms will adopt food safety systems goes up by 39.5 percent. This rate was the first range observed among all the marginal probability values obtained and thus verified the hypothesis that export orientation is a major motivator for the adoption of food safety systems in the Turkish dried fig firms.
Resumo:
Collective action has been used as a strategy to improve the benefits of smallholder producers of kola nuts in Cameroon. Despite demonstrated benefits, not all producers are involved in the collective action. The presented study used a modified Technology Acceptance Model (TAM) namely the Collective Action Behaviour model (CAB model) to analyse kola producers’ motivation for collective action activities. Five hypotheses are formulated and tested using data obtained from 185 farmers who are involved in kola production and marketing in theWestern highlands of Cameroon. Results which were generated using Partial Least Squares (PLS) approach for Structural Equation Modelling (SEM) showed that farmers’ intrinsic motivators and ease of use influenced their behavioural intent to join a group marketing activities. The perceived usefulness that was mainly related to the economic benefits of group activities did not influence farmers’ behavioural intent. It is therefore concluded that extension messages and promotional activities targeting collective action need to emphasise the perceived ease of use of involvement and social benefits associated with group activities in order to increase farmers’ participation.
Resumo:
In Khartoum (Sudan) a particular factor shaping urban land use is the rapid expansion of red brick making (BM) for the construction of houses which occurs on the most fertile agricultural Gerif soils along the Nile banks. The objectives of this study were to assess the profitability of BM, to explore the income distribution among farmers and kiln owners, to measure the dry matter (DM), nitrogen (N), phosphorus (P), potassium (K) and organic carbon (C_org) in cow dung used for BM, and to estimate the greenhouse gas (GHG) emissions from burned biomass fuel (cow dung and fuel wood). About 49 kiln owners were interviewed in 2009 using a semi-structured questionnaire that allowed to record socio-economic and variable cost data for budget calculations, and determination of Gini coefficients. Samples of cow dung were collected directly from the kilns and analyzed for their nutrients concentrations. To estimate GHG emissions a modified approach of the Intergovernmental Panel on Climate Change (IPCC) was used. The land rental value from red brick kilns was estimated at 5-fold the rental value from agriculture and the land rent to total cost ratio was 29% for urban farms compared to 6% for BM. The Gini coefficients indicated that income distribution among kiln owners was more equal than among urban farmers. Using IPCC default values the 475, 381, and 36 t DM of loose dung, compacted dung, and fuel wood used for BM emit annually 688, 548, and 60 t of GHGs, respectively.
Resumo:
This study describes a combined empirical/modeling approach to assess the possible impact of climate variability on rice production in the Philippines. We collated climate data of the last two decades (1985-2002) as well as yield statistics of six provinces of the Philippines, selected along a North-South gradient. Data from the climate information system of NASA were used as input parameters of the model ORYZA2000 to determine potential yields and, in the next steps, the yield gaps defined as the difference between potential and actual yields. Both simulated and actual yields of irrigated rice varied strongly between years. However, no climate-driven trends were apparent and the variability in actual yields showed no correlation with climatic parameters. The observed variation in simulated yields was attributable to seasonal variations in climate (dry/wet season) and to climatic differences between provinces and agro-ecological zones. The actual yield variation between provinces was not related to differences in the climatic yield potential but rather to soil and management factors. The resulting yield gap was largest in remote and infrastructurally disfavored provinces (low external input use) with a high production potential (high solar radiation and day-night temperature differences). In turn, the yield gap was lowest in central provinces with good market access but with a relatively low climatic yield potential. We conclude that neither long-term trends nor the variability of the climate can explain current rice yield trends and that agroecological, seasonal, and management effects are over-riding any possible climatic variations. On the other hand the lack of a climate-driven trend in the present situation may be superseded by ongoing climate change in the future.