615 resultados para Labile
Resumo:
Flagellar hook-basal body (HBB) complexes were purified from Rhodobacter sphaeroides. The HBB was more acid labile but more heat stable than that of Salmonella species, and protein identification revealed that HBB components were expressed only from one of the two sets of flagellar gene clusters on the R. sphaeroides genome, under the heterotrophic growth conditions tested here.
Resumo:
The results of time-resolved gas phase studies of labile germylenes (GeH2 and GeMe2) and dimethylstannylene (SnMe2) reactions reported to date are considered together with data of quantum-chemical investigations of the potential energy surfaces of these systems. Reaction mechanisms are discussed. A comparison of reactivity in the series of carbene analogs, ER2 (E = Si, Ge, Sn, R = H, Me), is made.
Resumo:
New hydrophobic, tridentate nitrogen heterocyclic reagents (BATPs) such as 2,6-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydrobenzo[1,2,4]triazin-3-yl) pyridine (1) and 2,6-bis(9,9,10,10-tetramethyl-9,10-dihydro-1,2,4-triaza-anthrane-3-yl) pyridine (2) have been studied. I is resistant to hydrolysis in 3 M nitric acid, whereas 2 is resistant to both acid hydrolysis and radiolysis. The molecules are able to give significantly enhanced separations of americium(III) from an excess of europium(III) in nitric acid. Typically, for 1 D-Am = 500 and SFAm,/Eu = 5000 compared with D-Am = 30 and SFAm /Eu = 400 with the reference molecule 2,6-bis(isopropyl[1,2,4]triazin-3-yl) pyridine (7). In order to increase the stability of 1 and 2, the labile alpha-benzylic hydrogens that are present in 7 have been replaced by alkyl groups. Three molecules of 1 are able to enclose completely the coordination sphere of the M(III) in the crystal structure of [Y(1)(3)][Y(NO3)(5)]center dot NO3 center dot 2.5H(2)O.
Resumo:
Stabilized nano-sized water droplet carrying water-soluble Co2+ species is employed as a new catalyst system for the oxidation of the alkyl aromatics in the presence of a fluorinated surfactant. This stable system contains no labile C-H structure and can facilitate excellent mixing of catalytic Co(II)/NaBr species, hydrocarbon substrates and oxygen in supercritical carbon dioxide fluid, which is demonstrated to be an excellent alternative solvent system to acetic acid or nitric acid for air oxidation of a number of alkyl aromatic hydrocarbons using Co(II) species at mild conditions. As a result, potential advantages of this 'greener' catalytic method including safer operation, easier separation and purification, higher catalytic activity with selectivity and without using corrosive or oxidation unstable solvent are therefore envisaged.
Resumo:
There has been significant interest in the methodologies of controlled release for a diverse range of applications spanning drug delivery, biological and chemical sensors, and diagnostics. The advancement in novel substrate-polymer coupling moieties has led to the discovery of self-immolative linkers. This new class of linker has gained popularity in recent years in polymeric release technology as a result of stable bond formation between protecting and leaving groups, which becomes labile upon activation, leading to the rapid disassembly of the parent polymer. This ability has prompted numerous studies into the design and development of self-immolative linkers and the kinetics surrounding their disassembly. This review details the main concepts that underpin self-immolative linker technologies that feature in polymeric or dendritic conjugate systems and outlines the chemistries of amplified self-immolative elimination.
Resumo:
The spatial variability of soil nitrogen (N) mineralisation has not been extensively studied, which limits our capacity to make N fertiliser recommendations. Even less attention has been paid to the scale-dependence of the variation. The objective of this research was to investigate the scale-dependence of variation of mineral N (MinN, N–NO3− plus N–NH4+) at within-field scales. The study was based on the spatial dependence of the labile fractions of SOM, the key fractions for N mineralisation. Soils were sampled in an unbalanced nested design in a 4-ha arable field to examine the distribution of the variation of SOM at 30, 10, 1, and 0.12 m. Organic matter in free and intra-aggregate light fractions (FLF and IALF) was extracted by physical fractionation. The variation occurred entirely within 0.12 m for FLF and at 10 m for IALF. A subsequent sampling on a 5-m grid was undertaken to link the status of the SOM fractions to MinN, which showed uncorrelated spatial dependence. A uniform application of N fertiliser would be suitable in this case. The failure of SOM fractions to identify any spatial dependence of MinN suggests that other soil variables, or crop indicators, should be tested to see if they can identify different N supply areas within the field for a more efficient and environmentally friendly N management.
Resumo:
Treatment of the labile cluster [Os3(CO)11(MeCN)] with PH3 affords the substituted product [Os3(CO)11(PH3)](1) in high yield. Subsequent reaction of (1) with Na2CO3 in MeOH, followed by acidification, gives the hydrido phosphido cluster [Os3(µ-H)(CO)10(µ-PH2)](2). When (2) is heated to 45–60 °C in the presence of [Os3(CO)11(MeCN)] a hexanuclear complex with the formulation [Os6(µ-H)2(CO)21(µ3-PH)](3) is obtained. If this reaction is repeated using [Os3(CO)10(MeCN)2] instead of [Os3(CO)11(MeCN)], an acetonitrile-containing product, [Os6(µ-H)2(CO)20(MeCN)(µ3-PH)](4), is obtained. An X-ray analysis of (4) shows that two Os3 triangular units are linked by a µ3-phosphinidene ligand, which symmetrically bridges an Os–Os edge of one triangle and is terminally co-ordinated to one Os atom of the second triangle. When (3) is treated with a weak base, such as [N(PPh3)2]Cl or [PPh3Me] Br, deprotonation to the corresponding cluster monoanion [Os6(µ-H)(CO)21(µ3-PH)]–(5) occurs. Treatment of (5) with a weak acid regenerates (3) in quantitative yield. Thermolysis of (3) leads to a closing up of the metal framework, affording the cluster [Os6(µ-H)(CO)18(µ6-P)], which readily deprotonates to give the anion [Os6(CO)18(µ6-P)]–(7) in the presence of [N(PPh3)2] Cl or [PPh3Me]Br. The same anion (7) may also be obtained by direct thermolysis of (5). An X-ray analysis of the [PPh3Me]+ salt of (7) confirms that the phosphorus occupies an interstitial site in a trigonal-prismatic hexaosmium framework, and co-ordinates to all six metal atoms with an average Os–P distance of 2.31 (1)Å. Proton and 31P n.m.r. data on all the new clusters are presented, and the position of the phosphorus resonance in the 31P n.m.r. spectrum is related to the changes in the environment of the phosphorus atom.
Resumo:
Future high levels of atmospheric carbon dioxide (CO2) may increase biomass production of terrestrial plants and hence plant requirements for soil mineral nutrients to sustain a greater biomass production. Phosphorus (P), an element essential for plant growth, is found in soils both in inorganic and in organic forms. In this work, three genotypes of Populus were grown under ambient and elevated atmospheric CO2 concentrations (FACE) for 5 years. An N fertilisation treatment was added in years 4 and 5 after planting. Using a fractionation scheme, total P was sequentially extracted using H2O, NaOH, HCl and HNO3, and P determined as both molybdate (Mo) reactive and total P. Molybdate-reactive P is defined as mainly inorganic but also some labile organic P which is determined by Vanado-molybdophosphoric acid colorimetric methods. Organic P was also measured to assess all plant available and weatherable P pools. We tested the hypotheses that higher P demand due to increased growth is met by a depletion of easily weatherable soil P pools, and that increased biomass inputs increases the amount of organic P in the soil. The concentration of organic P increased under FACE, but was associated with a decrease in total soil organic matter. The greatest increase in the soil P due to elevated CO2 was found in the HCl-extractable P fraction in the non-fertilised treatment. In the NaOH-extractable fraction the Mo-reactive P increased under FACE, but total P did not differ between ambient and FACE. The increase in both the NaOH- and HCl-extractable fractions was smaller after N addition. The results showed that elevated atmospheric CO2 has a positive effect on soil P availability rather than leading to depletion.We suggest that the increase in the NaOH- and HCl-extractable fractions is biologically driven by organic matter mineralization, weathering and mycorrhizal hyphal turnover.
Resumo:
Background and Aims. The response of soil respiration (SR) to elevated CO2 is driven by a number of processes and feedbacks. This work aims to i) detect the effect of elevated CO2 on soil respiration during the second rotation of a short rotation forest, at two levels of N availability; and ii) identify the main drivers behind any changes in soil respiration. Methods. A poplar plantation (POP-EUROFACE) was grown for two rotations of three years under elevated CO2 maintained by a FACE (Free Air CO2 Enrichment) technique. Root biomass, litter production and soil respiration were followed for two consecutive years after coppice. Results. In the plantation, the stimulation of fine root and litter production under elevated CO2 observed at the beginning of the rotation declined over time. Soil respiration (SR) was continuously stimulated by elevated CO2, with a much larger enhancement during the growing (up to 111 %) than in the dormant season (40 %). The SR increase at first appeared to be due to the increase in fine root biomass, but at the end of the 2nd rotation was supported by litter decomposition and the availability of labile C. Soil respiration increase under elevated CO2 was not affected by N availability. Conclusions. The stimulation of SR by elevated CO2 was sustained by the decomposition of above and belowground litter and by the greater availability of easily decomposable substrates into the soil. C losses through SR were greater in the last year of the plantation due to a lack of effect of elevated CO2 on C allocation to roots, reducing the potential for C accumulation.
Resumo:
Retreating ice fronts (as a result of a warming climate) expose large expanses of deglaciated forefield, which become colonized by microbes and plants. There has been increasing interest in characterizing the biogeochemical development of these ecosystems using a chronosequence approach. Prior to the establishment of plants, microbes use autochthonously produced and allochthonously delivered nutrients for growth. The microbial community composition is largely made up of heterotrophic microbes (both bacteria and fungi), autotrophic microbes and nitrogen-fixing diazotrophs. Microbial activity is thought to be responsible for the initial build-up of labile nutrient pools, facilitating the growth of higher order plant life in developed soils. However, it is unclear to what extent these ecosystems rely on external sources of nutrients such as ancient carbon pools and periodic nitrogen deposition. Furthermore, the seasonal variation of chronosequence dynamics and the effect of winter are largely unexplored. Modelling this ecosystem will provide a quantitative evaluation of the key processes and could guide the focus of future research. Year-round datasets combined with novel metagenomic techniques will help answer some of the pressing questions in this relatively new but rapidly expanding field, which is of growing interest in the context of future large-scale ice retreat.
Resumo:
The decomposition of soil organic matter (SOM) is temperature dependent, but its response to a future warmer climate remains equivocal. Enhanced rates of decomposition of SOM under increased global temperatures might cause higher CO2 emissions to the atmosphere, and could therefore constitute a strong positive feedback. The magnitude of this feedback however remains poorly understood, primarily because of the difficulty in quantifying the temperature sensitivity of stored, recalcitrant carbon that comprises the bulk (>90%) of SOM in most soils. In this study we investigated the effects of climatic conditions on soil carbon dynamics using the attenuation of the 14C ‘bomb’ pulse as recorded in selected modern European speleothems. These new data were combined with published results to further examine soil carbon dynamics, and to explore the sensitivity of labile and recalcitrant organic matter decomposition to different climatic conditions. Temporal changes in 14C activity inferred from each speleothem was modelled using a three pool soil carbon inverse model (applying a Monte Carlo method) to constrain soil carbon turnover rates at each site. Speleothems from sites that are characterised by semi-arid conditions, sparse vegetation, thin soil cover and high mean annual air temperatures (MAATs), exhibit weak attenuation of atmospheric 14C ‘bomb’ peak (a low damping effect, D in the range: 55–77%) and low modelled mean respired carbon ages (MRCA), indicating that decomposition is dominated by young, recently fixed soil carbon. By contrast, humid and high MAAT sites that are characterised by a thick soil cover and dense, well developed vegetation, display the highest damping effect (D = c. 90%), and the highest MRCA values (in the range from 350 ± 126 years to 571 ± 128 years). This suggests that carbon incorporated into these stalagmites originates predominantly from decomposition of old, recalcitrant organic matter. SOM turnover rates cannot be ascribed to a single climate variable, e.g. (MAAT) but instead reflect a complex interplay of climate (e.g. MAAT and moisture budget) and vegetation development.
Resumo:
The polychaete worm Nereis diversicolor engineers its environment by creating oxygenated burrows in anoxic intertidal sediments. The authors carried out a laboratory microcosm experiment to test the impact of polychaete burrowing and feeding activity on the lability and methylation of mercury in sediments from the Bay of Fundy, Canada. The concentration of labile inorganic mercury and methylmercury in burrow walls was elevated compared to worm-free sediments. Mucus secretions and organic detritus in worm burrows increased labile mercury concentrations. Worms decreased sulfide concentrations, which increased Hg bioavailability to sulfate-reducing bacteria and increased methylmercury concentrations in burrow linings. Because the walls of polychaete burrows have a greater interaction with organisms, and the overlying water, the concentrations of mercury and methylmercury they contain is more toxicologically relevant to the base of a coastal food web than bulk samples. The authors recommend that researchers examining Hg in marine environments account for sediment dwelling invertebrate activity to more fully assess mercury bioavailability.
Resumo:
Polychaete worms are abundant in many mudflats but their importance to coastal food web Hg biomagnification is not known. We sampled sediments and polychaete worms from mudflats in the Bay of Fundy to investigate the bioaccumulation of mercury (Hg) and methylmercury (MeHg) in the coastal invertebrate food web. Hg concentrations in the sediments were low (<20 μg kg−1). Labile Hg (methanol/KOH sediment extraction) in surface sediments (0–1 cm) was positively correlated with Hg bioaccumulation by surface sediment-ingesting polychaetes but, surprisingly, there was a negative correlation between δ15N (i.e. trophic level) and THg bioaccumulation factors in polychaete worms. Worms feeding on deeper sediments contained the greatest MeHg concentrations (69.6 μg kg−1). Polychaetes are an important vector for Hg biomagnification to the coastal avian food web. This research demonstrates that feeding depth and method of feeding are more important than trophic position or sediment Hg concentrations for predicting Hg bioaccumulation.
Resumo:
Soil organic matter (SOM) increases with time as landscape is restored. Studying SOM development along restored forest chronosequences would be useful in clarifying some of the uncertainties in quantifying C turnover rates with respect to forest clearance and ensuing restoration. The development of soil organic matter in the mineral soils was studied at four depths in a 16-year-old restored jarrah forest chronosequence. The size-separated SOM fractionation along with δ13C isotopic shift was utilised to resolve the soil C temporal and spatial changes with developing vegetation. The restored forest chronosequence revealed several important insights into how soil C is developing with age. Litter accumulation outpaced the native forest levels in 12 years after restoration. The surface soils, in general, showed increase in total C with age, but this trend was not clearly observed at lower depths. C accumulation was observed with increasing restoration age in all three SOM size-fractions in the surface 0–2 cm depth. These biodiverse forests show a trend towards accumulating C in recalcitrant stable forms, but only in the surface 0–2 cm mineral soil. A significant reverse trend was observed for the moderately labile SOM fraction for lower depths with increasing restoration age. Correlating the soil δ13C with total C concentration revealed the re-establishment of the isotopically depleted labile to enriched refractory C continuum with soil depth for the older restored sites. This implied that from a pedogenic perspective, the restored soils are developing towards the original native soil carbon profile.
Resumo:
Two key plant adaptations for phosphorus (P) acquisition are carboxylate exudation into the rhizosphere and mycorrhizal symbioses. These target different soil P resources, presumably with different plant carbon costs. We examined the effect of inoculation with arbuscular mycorrhizal fungi (AMF) on amount of rhizosphere carboxylates and plant P uptake for 10 species of low-P adapted Kennedia grown for 23 weeks in low-P sand. Inoculation decreased carboxylates in some species (up to 50%), decreased plant dry weight (21%) and increased plant P content (23%). There was a positive logarithmic relationship between plant P content and the amount of rhizosphere citric acid for inoculated and uninoculated plants. Causality was indicated by experiments using sand where little citric acid was lost from the soil solution over 2 h and citric acid at low concentrations desorbed P into the soil solution. Senesced leaf P concentration was often low and P-resorption efficiencies reached >90%. In conclusion, we propose that mycorrhizally mediated resource partitioning occurred because inoculation reduced rhizosphere carboxylates, but increased plant P uptake. Hence, presumably, the proportion of plant P acquired from strongly sorbed sources decreased with inoculation, while the proportion from labile inorganic P increased. Implications for plant fitness under field conditions now require investigation.