994 resultados para Konfiguration <Informatik>
Resumo:
Formal Concept Analysis is an unsupervised learning technique for conceptual clustering. We introduce the notion of iceberg concept lattices and show their use in Knowledge Discovery in Databases (KDD). Iceberg lattices are designed for analyzing very large databases. In particular they serve as a condensed representation of frequent patterns as known from association rule mining. In order to show the interplay between Formal Concept Analysis and association rule mining, we discuss the algorithm TITANIC. We show that iceberg concept lattices are a starting point for computing condensed sets of association rules without loss of information, and are a visualization method for the resulting rules.
Resumo:
Cooperative behaviour of agents within highly dynamic and nondeterministic domains is an active field of research. In particular establishing highly responsive teamwork, where agents are able to react on dynamic changes in the environment while facing unreliable communication and sensory noise, is an open problem. Moreover, modelling such responsive, cooperative behaviour is difficult. In this work, we specify a novel model for cooperative behaviour geared towards highly dynamic domains. In our approach, agents estimate each other’s decision and correct these estimations once they receive contradictory information. We aim at a comprehensive approach for agent teamwork featuring intuitive modelling capabilities for multi-agent activities, abstractions over activities and agents, and a clear operational semantic for the new model. This work encompasses a complete specification of the new language, ALICA.
Resumo:
We provide a new method for systematically structuring the top-down level of ontologies. It is based on an interactive, top-down knowledge acquisition process, which assures that the knowledge engineer considers all possible cases while avoiding redundant acquisition. The method is suited especially for creating/merging the top part(s) of the ontologies, where high accuracy is required, and for supporting the merging of two (or more) ontologies on that level.
Resumo:
Topics in education are changing with an ever faster pace. E-Learning resources tend to be more and more decentralised. Users need increasingly to be able to use the resources of the web. For this, they should have tools for finding and organizing information in a decentral way. In this, paper, we show how an ontology-based tool suite allows to make the most of the resources available on the web.
Resumo:
In the last years, the main orientation of Formal Concept Analysis (FCA) has turned from mathematics towards computer science. This article provides a review of this new orientation and analyzes why and how FCA and computer science attracted each other. It discusses FCA as a knowledge representation formalism using five knowledge representation principles provided by Davis, Shrobe, and Szolovits [DSS93]. It then studies how and why mathematics-based researchers got attracted by computer science. We will argue for continuing this trend by integrating the two research areas FCA and Ontology Engineering. The second part of the article discusses three lines of research which witness the new orientation of Formal Concept Analysis: FCA as a conceptual clustering technique and its application for supporting the merging of ontologies; the efficient computation of association rules and the structuring of the results; and the visualization and management of conceptual hierarchies and ontologies including its application in an email management system.
Resumo:
Among many other knowledge representations formalisms, Ontologies and Formal Concept Analysis (FCA) aim at modeling ‘concepts’. We discuss how these two formalisms may complement another from an application point of view. In particular, we will see how FCA can be used to support Ontology Engineering, and how ontologies can be exploited in FCA applications. The interplay of FCA and ontologies is studied along the life cycle of an ontology: (i) FCA can support the building of the ontology as a learning technique. (ii) The established ontology can be analyzed and navigated by using techniques of FCA. (iii) Last but not least, the ontology may be used to improve an FCA application.
Resumo:
In this paper we study two orthogonal extensions of the classical data mining problem of mining association rules, and show how they naturally interact. The first is the extension from a propositional representation to datalog, and the second is the condensed representation of frequent itemsets by means of Formal Concept Analysis (FCA). We combine the notion of frequent datalog queries with iceberg concept lattices (also called closed itemsets) of FCA and introduce two kinds of iceberg query lattices as condensed representations of frequent datalog queries. We demonstrate that iceberg query lattices provide a natural way to visualize relational association rules in a non-redundant way.
Resumo:
Semantic Web Mining aims at combining the two fast-developing research areas Semantic Web and Web Mining. This survey analyzes the convergence of trends from both areas: Growing numbers of researchers work on improving the results of Web Mining by exploiting semantic structures in the Web, and they use Web Mining techniques for building the Semantic Web. Last but not least, these techniques can be used for mining the Semantic Web itself. The second aim of this paper is to use these concepts to circumscribe what Web space is, what it represents and how it can be represented and analyzed. This is used to sketch the role that Semantic Web Mining and the software agents and human agents involved in it can play in the evolution of Web space.
Resumo:
About ten years ago, triadic contexts were presented by Lehmann and Wille as an extension of Formal Concept Analysis. However, they have rarely been used up to now, which may be due to the rather complex structure of the resulting diagrams. In this paper, we go one step back and discuss how traditional line diagrams of standard (dyadic) concept lattices can be used for exploring and navigating triadic data. Our approach is inspired by the slice & dice paradigm of On-Line-Analytical Processing (OLAP). We recall the basic ideas of OLAP, and show how they may be transferred to triadic contexts. For modeling the navigation patterns a user might follow, we use the formalisms of finite state machines. In order to present the benefits of our model, we show how it can be used for navigating the IT Baseline Protection Manual of the German Federal Office for Information Security.
Resumo:
Ontologies have been established for knowledge sharing and are widely used as a means for conceptually structuring domains of interest. With the growing usage of ontologies, the problem of overlapping knowledge in a common domain becomes critical. In this short paper, we address two methods for merging ontologies based on Formal Concept Analysis: FCA-Merge and ONTEX. --- FCA-Merge is a method for merging ontologies following a bottom-up approach which offers a structural description of the merging process. The method is guided by application-specific instances of the given source ontologies. We apply techniques from natural language processing and formal concept analysis to derive a lattice of concepts as a structural result of FCA-Merge. The generated result is then explored and transformed into the merged ontology with human interaction. --- ONTEX is a method for systematically structuring the top-down level of ontologies. It is based on an interactive, top-down- knowledge acquisition process, which assures that the knowledge engineer considers all possible cases while avoiding redundant acquisition. The method is suited especially for creating/merging the top part(s) of the ontologies, where high accuracy is required, and for supporting the merging of two (or more) ontologies on that level.
Resumo:
Social bookmark tools are rapidly emerging on the Web. In such systems users are setting up lightweight conceptual structures called folksonomies. These systems provide currently relatively few structure. We discuss in this paper, how association rule mining can be adopted to analyze and structure folksonomies, and how the results can be used for ontology learning and supporting emergent semantics. We demonstrate our approach on a large scale dataset stemming from an online system.
Resumo:
Wissensmanagement in zentralisierten Wissensbasen erfordert einen hohen Aufwand für Erstellung und Wartung, und es entspricht nicht immer den Anforderungen der Benutzer. Wir geben in diesem Kapitel einen Überblick über zwei aktuelle Ansätze, die durch kollaboratives Wissensmanagement diese Probleme lösen können. Im Peer-to-Peer-Wissensmanagement unterhalten Benutzer dezentrale Wissensbasen, die dann vernetzt werden können, um andere Benutzer eigene Inhalte nutzen zu lassen. Folksonomies versprechen, die Wissensakquisition so einfach wie möglich zu gestalten und so viele Benutzer in den Aufbau und die Pflege einer gemeinsamen Wissensbasis einzubeziehen.
Resumo:
Social bookmark tools are rapidly emerging on the Web. In such systems users are setting up lightweight conceptual structures called folksonomies. The reason for their immediate success is the fact that no specific skills are needed for participating. In this paper we specify a formal model for folksonomies and briefly describe our own system BibSonomy, which allows for sharing both bookmarks and publication references in a kind of personal library.