362 resultados para KERATINOCYTES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

STATs play crucial roles in a wide variety of biological functions, including development, proliferation, differentiation, migration and in cancer development. In the present study, we examined the impact of Stat3 deletion or activation on behavior of keratinocytes, including keratinocyte stem cells (KSCs). Deletion of Stat3 specifically in the bulge region of the hair follicle using K15.CrePR1 X Stat3fl/fl mice led to decreased tumor development by altering survival of bulge region KSCs. To further understand the role of KSCs in skin tumorigenesis, K5.Stat3C transgenic (Tg) mice which express a constitutively active/dimerized form of Stat3 called Stat3C via the bovine keratin 5 (K5) promoter were studied. The number of CD34 and α6 integrin positive cells was significantly reduced in Tg mice as compared to non-transgenic (NTg) littermates. There was a concomitant increase in the progenitor populations (Lgr-6, Lrig-1 and Sca-1) in the Tg mice vs. the stem cell population (CD34 and Keratin15). To investigate the mechanism underlying the increase in the progenitor population at the expense of bulge region KSCs we examined if Stat3C expression was involved in inducing migration of the bulge region KSCs. There was altered β-catenin and α6-integrin expression in the hair follicles of Tg mice, which may have contributed to reduced adhesive interactions between the epithelial cells and the basement membrane facilitating migration out of the niche. To further study the effect of Stat3 on differentiation of keratinocytes we analyzed the epidermal keratinocytes in K5.Cre X Stat3fl/fl mice. There was an increase in the expression of epidermal differentiation markers in the Stat3 knockout mice. These data suggest that deletion of Stat3 in the epidermis and hair follicle induced differentiation in these cells. Preliminary studies done with the BK5.Stat3C mouse model suggests that multiple hair follicle stem/progenitor populations may be involved in skin tumor development and progression in this model of skin tumorigenesis. Overall, these data suggest that Stat3 plays an important role in differentiation as well as migration of keratinocytes and that these effects may play a role during epithelial carcinogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MicroRNAs play roles in various biological processes like development, tumorigenesis, metastasis and pluripotency. My thesis work has demonstrated roles for p63, a p53 family member, in the upstream regulation of microRNA biogenesis. The p63 gene has a complex gene structure and has multiple isoforms. The TAp63 isoforms contain an acidic transcription activation domain. The ΔNp63 isoforms, lack the TA domain, but have a proline rich region critical for gene transactivation. To understand the functions of these isoforms, the Flores lab generated TAp63 and ΔNp63 conditional knock out mice. Using these mice and tissues and cells from these mice we have found that TAp63 transcriptionally regulates Dicer while ΔNp63 transcriptionally regulates DGCR8. TAp63 -/- mice are highly tumor prone. These mice develop metastatic mammary adenocarcinomas, squamous cell carcinomas, and lung adenocarcinomas to distant sites including the liver, lungs, and brain. I found that TAp63 suppresses metastasis by transcriptionally activating Dicer. TAp63 and Dicer levels were very low or lost in high grade human tumors like mammary adenocarcinomas, squamous cell carcinomas, and lung adenocarcinomas. Expression of Dicer in these tumor cell lines reduced their invasiveness. Using ΔNp63 -/- mice, I found that ΔNp63 transcriptionally activates DGCR8, resulting in a miRNA profile that is critical to reprogram cells to pluripotency. Analysis of epidermal cells derived from ΔNp63 -/- mice revealed that these cells expressed markers of pluripotency, including Sox2, Oct 4 and Nanog; however, genome-wide analysis revealed a novel profile of genes that are common between ΔNp63 -/- epidermal cells and embryonic stem cells. I also found that mouse cells depleted of ΔNp63 form chimeric mice and teratomas in SCID mice, demonstrating that ΔNp63 deficient cells are pluripotent. Further, I found that restoration of DGCR8 in ΔNp63 -/- epidermal cells reduces their pluripotency and induces terminal differentiation. I also demonstrated that iMS (induced multipotent stem) cells could be generated using human keratinocytes by knockdown of ∆Np63 or DGCR8. Taken together, my work has placed p63 and its isoforms at a critical node in controlling miRNA biogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was designed to determine the potential anticarcinogenic activity of naturally occurring coumarins and their mechanism of action. The results indicated that several naturally occurring coumarins including bergamottin, coriandrin, imperatorin, isopimpinellin, and ostruthin, to which humans are routinely exposed in the diet, were effective inhibitors and/or inactivators of CYP1A1-mediated ethoxyresorufin-O-dealkylase (EROD) or CYP2B1-mediated pentoxyresorufin-O-dealkylase (PROD) in mouse liver microsomes. In addition, bergamottin and corandrin were also found to be inhibitors of purified human P450 1A1 in vitro. Further studies with coriandrin revealed that this compound was a mechanism-based inactivator of P450 1A1 and covalently bound to the P450 1A1 apoprotein. In cultured mouse keratinocytes, bergamottin and coriandrin effectively inhibited the B(a) P metabolism and significantly decreased covalent binding of B(a) P and DMBA to keratinocyte DNA and anti-diol-epoxide-DNA adducts derived from both B(a) P and DMBA in keratinocytes. The data from in vivo experiments showed that bergamottin and coriandrin were potent inhibitors of covalent binding of B (a) P to epidermal DNA and the formation of (+) anti BPDE-DNA adduct, whereas imperatorin and isopimpinellin were more potent inhibitors of covalent binding of DMBA to epidermal DNA. The ability of coumarins to inhibit covalent binding of B (a) P to DNA in mouse epidermis was positively correlated with their inhibitory effect P450 1A1 in vitro, while the inhibitory effect of coumarins on covalent binding of DMBA to epidermal DNA was positively correlated with their inhibitory effects on P450 2B1 and negatively to their inhibitory activity toward P450 1A1. The data from tumor experiments indicated that bergamottin, ostruthin, and coriandrin inhibited tumor initiation by B (a) P in a two-stage carcinogenesis protocol. Bergamottin was most effective in this regard and produced a dose dependent inhibition of papilloma formation in these experiments. In addition, imperatorin was an effective inhibitor of skin tumorigenesis induced by DMBA in SENCAR mouse skin using both a two-stage and a complete carcinogenesis protocol. At dose levels higher than those effective against DMBA, imperatorin also inhibited tumor initiation by B (a) P. The results to date demonstrate that several naturally occurring coumarins possess the ability to block tumor initiation and tumorigenesis by PAHs such as B (a) P and DMBA through inhibition of the P450s involved in the metabolic activation of these hydrocarbons. A working model for the involvement of specific P450s in the metabolic activation of these two PAHs was proposed. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies from our lab have shown distinctive patterns of expression of bcl-2 gene family members in human nonmelanoma skin cancer (NMSC). To further evaluate the significance of these observations and to study the effects of cell death deregulation during skin carcinogenesis, we generated a transgenic mouse model (HK1.bcl-2) using the human keratin 1 promoter to target the expression of a human bcl-2 minigene to the epidermis. Transgenic protein expression was confirmed in all the layers of the epidermis except the stratum corneum using immunohistochemistry. Multifocal epidermal hyperplasia, without associated hyperkeratosis, was observed in newborn HK1.bcl-2 mice. Immunofluorescence staining using monoclonal antibodies specific for a variety of differentiation markers revealed aberrant expression of keratin 6 (K6) in the transgenic epidermis. Epidermal proliferative indexes, assessed by anti-BrdUrd immunofluorescence staining, were similar in control and transgenic newborn mice, but suprabasal proliferating cells were seen within the hyperplastic areas of the transgenic mouse skin. Spontaneous apoptotic indices of the epidermis were similar in both control and HK1.bcl-2 transgenic newborn mice, however, after UV-B irradiation, the number of "sunburn cells" was significantly higher in the control compared to the HK1.bcl-2 transgenic animals.^ Adult HK1.bcl-2 and control littermate mice were used in UV-B and chemical carcinogenesis protocols including DMBA + TPA. UV-B irradiated control and HK1.bcl-2 mice had comparable incidence of tumors than the controls, but the mean latency period was significantly shorter in the HK1.bcl-2 transgenic. Both control and transgenic animals included in chemical carcinogenesis protocols required application of both the initiating (DMBA) and promoting (TPA) agents to develop tumors. The frequency, number, and latency of tumor formation was similar in both groups of animals, however, HK1.bcl-2 mice exhibited a rate of conversion from benign papilloma to carcinoma 2.5 times greater than controls.^ Similar carcinogenesis experiments were performed using newborn mice. HK1.bcl-2 mice treated with UV-B plus TPA have a three fold greater incidence of tumor formation compared to controls littermates. HK1.bcl-2 transgenic animals also exhibited a shorter latency for papilloma formation when treated with DMBA plus TPA.^ HK1.bcl-2/v-Ha-ras double transgenic mice shared phenotypic features of both HK1.v-Ha-ras and HK1.bcl-2 transgenic mice, and exhibited focal areas of augmented hyperplasia. These double transgenic mice were susceptible to tumor formation by treatment with TPA alone.^ Cultures of primary keratinocytes were established from control, HK1.bcl-2, HK1.Ha-ras, and HK1.bcl-2/v-Ha-ras newborn mice. Cell viability was determined after exposure of the cells to UV-B irradiation, DMBA, TPA, or TGF-$\beta$1. Internucleosomal DNA fragmentation ("ladders") and morphological cellular changes compatible with apoptotic cell death were observed after the application of all these agents. HK1.bcl-2 keratinocytes were resistant to cell death induction by all of these agents except TGF-$\beta$1. HK1.Ha-ras cells had a higher spontaneous rate of cell death which could be compensated by co-expression of bcl-2.^ These findings suggest that bcl-2 dependent cell death suppression may be an important component of multistep skin carcinogenesis. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-melanoma skin cancers, including basal cell carcinoma and squamous cell carcinoma (SCC), are the most common neoplasms in the United States with a lifetime risk nearly equal to all other types of cancer combined. Retinoids are naturally occurring and synthetic analogues of vitamin A that bind to nuclear retinoid receptors and modulate gene expression as a means of regulating cell proliferation and differentiation. Retinoids have been employed for many years in the treatment of various cutaneous lesions and for cancer chemoprevention and therapy. The primary drawback limiting the use of retinoids is their toxicity, which is also associated with receptor-gene interactions. In this study, the effects of the synthetic retinoids N-(4-hydroxyphenyl)retinamide (4HPR) and 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) were examined in cutaneous keratinocytes. Four human cutaneous SCC cell lines were examined along with normal human epidermal keratinocyte (NHEK) cells from two donors. Sensitivity to 4HPR or CD437 alone or in combination with other agents was determined via growth inhibition, cell cycle distributions, or apoptosis induction. Both synthetic retinoids were able to promote apoptosis in SCC cells more effectively than the natural retinoid all-trans retinoic acid. Apoptosis could not be inhibited by nuclear retinoic acid receptor antagonists. In NHEK cells, 4HPR induced apoptosis while CD437 promoted G1 arrest. 4HPR acted as a prooxidant by generating reactive oxygen species (ROS) in SCC and NHEK cells. 4HPR-induced apoptosis in SCC cells could be inhibited or potentiated by manipulating cellular defenses against oxidative stress, indicating an essential role for ROS in 4HPR-induced apoptosis. CD437 promoted apoptosis in SCC cells in S and G2/M phases of the cell cycle within two hours of treatment, and this rapid induction could not be blocked with cycloheximide. This study shows: (1) 4HPR- and CD437-induced apoptosis do not directly involve a traditional retinoid pathway; (2) 4HPR can act as a prooxidant as a means of promoting apoptosis; (3) CD437 induces apoptosis in SCC cells independent of protein synthesis and is potentially less toxic to NHEK cells; and (4) 4HPR and CD437 operate under different mechanisms with respect to apoptosis induction and this may potentially enhance their therapeutic index in vivo. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-melanoma skin cancer (NMSC) is the most frequently diagnosed form of cancer in United States. As in many other cancers, this slow growing malignancy manifests deregulated expression of apoptosis regulating proteins including bcl-2 family member proteins. To understand the role of apoptosis regulating protein in epidermal homeostasis and progression of NMSC, we investigated keratinocyte proliferation, differentiation and tumorigenesis in bcl-2 and bax null mice. The rate and the pattern of proliferation and spontaneous cell death were the same between the null and the control mice. Both bcl-2 and bax null epidermis showed decreased levels of cytokeratin 14 expression compared to the control littermates. Also, the gene knock out mice showed higher expression of cytokeratin 1 and loricrin in epidermis compared to the control mice. The apoptotic response to genotoxic agent, UV radiation (UVR), was assessed by counting sunburn cells. The bax null keratinocytes showed a resistance to apoptosis while bcl-2 null mice showed an increased susceptibility to cell death compared to the control mice. Moreover, we demonstrated an increase in tumor incidence in bax null mice compared to control littermates in the in vivo chemical carcinogenesis study. Next, we examined the tumor suppressor role of bax protein in NMSC by studying its participation in repair of UVR-mediated DNA lesions. In UVR treated primary keratinocytes from bax deficient mice, the level of CPD remaining was twice that of control cells at 48 hours. Similar results were obtained using embryonic fibroblasts from bax null and bax +/+ embryos, and also with a bax deficient prostate cancer cell line in which bax expression had been restored. However, the repair rate of 6-4 PP was unaffected by the absence of bax protein in all three of above mentioned cell types. In conclusion, bax protein may have a dual function in its role as tumor suppressor in NMSC. Bax may directly or indirectly facilitate DNA repair, or programmed cell death if DNA damage is too severe, thus, in either function, preserving genomic integrity following a genotoxic event. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultraviolet radiation plays a critical role in the induction of non-melanoma skin cancer. UV radiation is also immune suppressive. Moreover, UV-induced systemic immune suppression is a major risk factor for skin cancer induction. Previous work had shown that UV exposure in vivo activates a cytokine cascade involving PGE2, IL-4, and IL-10 that induces immune suppression. However, the earliest molecular events that occur immediately after UV-exposure, especially those upstream of PGE2, were not well defined. To determine the initial events and mediators that lead to immune suppression after a pathological dose of UV, mouse keratinocytes were analyzed after sunlamp irradiation. It is known that UV-irradiated keratinocytes secrete the phospholipid mediator of inflammation, platelet-activating factor (PAF). Since PAF stimulates the production of immunomodulatory compounds, including PGE2, the hypothesis that UV-induced PAF activates cytokine production and initiates UV-induced immune suppression was tested. Both UV and PAF activated the transcription of cyclooxygenase (COX)-2 and IL-10 reporter gene constructs. A PAF receptor antagonist blocked UV-induced IL, 10 and COX-2 transcription. PAF mimicked the effects of UV in vivo and suppressed delayed-type hypersensitivity (DTH), and immune suppression was blocked when UV-irradiated mice were injected with a PAF receptor antagonist. This work shows that UV generates PAF-like oxidized lipids, that signal through the PAF receptor, activate cytokine transcription, and induce systemic immune suppression. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To assess the effect of deregulated Ha-ras and bcl-2, individually and in combination on epidermal keratinocyte homeostasis and during multistep skin carcinogenesis, we generated skin-specific transgenic mice and keratinocyte transfectants constitutively expressing oncogenic Ha-ras and bcl-2 proteins. The deregulated Ha-ras and bcl-2 expression contributing to homeostatic imbalances in the skin had an additive effect on the probability of tumor development. They were also cooperative in incidence, growth, and latency of tumor formation, and they exhibited synergistic cooperation in malignant transformation of benign papillomas. To explain the homeostatic imbalances by Ha-ras and bcl-2 overexpression in the skin, we investigated the three major cellular processes of proliferation, cell death, and differentiation. Epidermal expression of Bcl-2 retarded keratinocyte proliferation in the epidermis of neonatal mice compared with results for control littermates. Constitutive expression of Ha-ras increased keratinocyte proliferation, and co-expression of bcl-2 modestly suppressed the ras-mediated abnormal proliferation of neonatal keratinocytes. Bcl-2 proteins in keratinocytes protected UV-treated cells from apoptotic cell death regardless of oncogenic ras expression in both non-neoplastic neonatal epidermis and human keratinocyte cell lines. The spontaneous apoptotic index (AI) was also lower in papillomas constitutively expressing bcl-2 compared with the ones that developed in control mice. Ras-overexpressing epidermis, including that in ras/bcl-2 double transgenic mice, had abnormal differentiation patterns compared with controls. The oncogenic ras protein had alterations in both epidermal distribution and the extent of cytokeratin 14 and involucrin expression. Abnormal expression of the hyperproliferation marker cytokeratin 6 and modest down regulation of cytokeratin 1 were also detected. Late appearance of filaggrin was another abnormal phenotype of the ras-expressing epidermis. Overexpression of bcl-2 had no effect on epidermal differentiation. Together, these findings suggest that constitutive expression of oncogenic Ha-ras and bcl-2 are important determinants of epidermal proliferation, viability and differentiation. In summary, our results demonstrated that the disruption of epidermal homeostasis by overexpressed ras and bcl-2 predisposes to hyperplastic growth of the epidermis and to papilloma development and that these proteins with distinct mechanisms for oncogenesis are functionally synergistic for malignant transformation of chemically induced skin carcinogenesis. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recognized feature of psoriasis and other proliferative dermatoses is accumulation in the skin of the unusual arachidonic acid metabolite, 12R-hydroxyeicosatetraenoic acid (12R-HETE). This hydroxy fatty acid is opposite in chirality to the product of the well-known 12S-lipoxygenase and heretofore in mammals is known only as a product of cytochrome P450s. Here we provide mechanistic evidence for a lipoxygenase route to 12R-HETE in human psoriatic tissue and describe a 12R-lipoxygenase that can account for the biosynthesis. Initially we demonstrated retention of the C-12 deuterium of octadeuterated arachidonic acid in its conversion to 12R-HETE in incubations of psoriatic scales, indicating the end product is not formed by isomerization from 12S-H(P)ETE via the 12-keto derivative. Secondly, analysis of product formed from [10R-3H] and [10S-3H]-labeled arachidonic acids revealed that 12R-HETE synthesis is associated with stereospecific removal of the pro-R hydrogen from the 10-carbon of arachidonate. This result is compatible with 12R-lipoxygenase-catalyzed formation of 12R-HETE and not with a P450-catalyzed route to 12R-HETE in psoriatic scales. We cloned a lipoxygenase from human keratinocytes; the cDNA and deduced amino acid sequences share ≤50% identity to other human lipoxygenases. This enzyme, when expressed in Hela cells, oxygenates arachidonic acid to 12-HPETE, >98% 12R in configuration. The 12R-lipoxygenase cDNA is detectable by PCR in psoriatic scales and as a 2.5-kilobase mRNA by Northern analysis of keratinocytes. Identification of this enzyme extends the known distribution of R-lipoxygenases to humans and presents an additional target for potential therapeutic interventions in psoriasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mouse p53 protein generated by alternative splicing (p53as) has amino acid substitutions at its C terminus that result in constitutively active sequence-specific DNA binding (active form), whereas p53 protein itself binds inefficiently (latent form) unless activated by C-terminal modification. Exogenous p53as expression activated transcription of reporter plasmids containing p53 binding sequences and inhibited growth of mouse and human cells lacking functional endogenous p53. Inducible p53as in stably transfected p53 null fibroblasts increased p21WAF1/Cip-1/Sdi and decreased bcl-2 protein steady-state levels. Endogenous p53as and p53 proteins differed in response to cellular DNA damage. p53 protein was induced transiently in normal keratinocytes and fibroblasts whereas p53as protein accumulation was sustained in parallel with induction of p21WAF1/Cip-1/Sdi protein and mRNA, in support of p53as transcriptional activity. Endogenous p53 and p53as proteins in epidermal tumor cells responded to DNA damage with different kinetics of nuclear accumulation and efficiencies of binding to a p53 consensus DNA sequence. A model is proposed in which C-terminally distinct p53 protein forms specialize in functions, with latent p53 forms primarily for rapid non-sequence-specific binding to sites of DNA damage and active p53 forms for sustained regulation of transcription and growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In cycling cells, the retinoblastoma protein (pRb) is un- and/or hypo-phosphorylated in early G1 and becomes hyper-phosphorylated in late G1. The role of hypo-phosphorylation and identity of the relevant kinase(s) remains unknown. We show here that hypo-phosphorylated pRb associates with E2F in vivo and is therefore active. Increasing the intracellular concentration of the Cdk4/6 specific inhibitor p15INK4b by transforming growth factor β treatment of keratinocytes results in G1 arrest and loss of hypo-phosphorylated pRb with an increase in unphosphorylated pRb. Conversely, p15INK4b-independent transforming growth factor β-mediated G1 arrest of hepatocellular carcinoma cells results in loss of Cdk2 kinase activity with continued Cdk6 kinase activity and pRb remains only hypo-phosphorylated. Introduction of the Cdk4/6 inhibitor p16INK4a protein into cells by fusion to a protein transduction domain also prevents pRb hypo-phosphorylation with an increase in unphosphorylated pRb. We conclude that cyclin D:Cdk4/6 complexes hypo-phosphorylate pRb in early G1 allowing continued E2F binding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An mRNA differential display comparison of mouse JB6 promotion-sensitive (P+) and -resistant (P−) cells identified a novel gene product that inhibits neoplastic transformation. The JB6 P+ and P− cells are genetic variants that differ in their transformation response to tumor promoters; P+ cells form anchorage-independent colonies that are tumorigenic, and P− cells do not. A differentially displayed fragment, A7-1, was preferentially expressed in P− cells at levels ≥10-fold those in P+ cells, making its mRNA a candidate inhibitor of neoplastic transformation. An A7-1 cDNA was isolated that was identical to murine Pdcd4 gene cDNAs, also known as MA-3 or TIS, and analogous to human H731 and 197/15a. Until now, the function of the Pdcd4 protein has been unknown. Paralleling the mRNA levels, Pdcd4 protein levels were greater in P− than in P+ cells. Pdcd4 mRNA was also expressed at greater levels in the less progressed keratinocytes of another mouse skin neoplastic progression series. To test the hypothesis that Pdcd4 inhibits tumor promoter-induced transformation, stable cell lines expressing antisense Pdcd4 were generated from parental P− cells. The reduction of Pdcd4 proteins in antisense lines was accompanied by acquisition of a transformation-sensitive (P+) phenotype. The antisense-transfected cells were reverted to their initial P− phenotype by overexpression of a Pdcd4 sense fragment. These observations demonstrate that the Pdcd4 protein inhibits neoplastic transformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In contrast to naive lymphocytes, memory/effector lymphocytes can access nonlymphoid effector sites and display restricted, often tissue-selective, migration behavior. The cutaneous lymphocyte-associated antigen (CLA) defines a subset of circulating memory T cells that selectively localize in cutaneous sites mediated in part by the interaction of CLA with its vascular ligand E-selectin. Here, we report the identification and characterization of a CC chemokine, cutaneous T cell-attracting chemokine (CTACK). Both human and mouse CTACK are detected only in skin by Southern and Northern blot analyses. Specifically, CTACK message is found in the mouse epidermis and in human keratinocytes, and anti-CTACK mAbs predominantly stain the epithelium. Finally, CTACK selectively attracts CLA+ memory T cells. Taken together, these results suggest an important role for CTACK in recruitment of CLA+ T cells to cutaneous sites. CTACK is predominantly expressed in the skin and selectively attracts a tissue-specific subpopulation of memory lymphocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retinoids, synthetic and natural analogs of retinoic acid, exhibit potent growth inhibitory and cell differentiation activities that account for their beneficial effects in treating hyperproliferative diseases such as psoriasis, actinic keratosis, and certain neoplasias. Tazarotene is a synthetic retinoid that is used in the clinic for the treatment of psoriasis. To better understand the mechanism of retinoid action in the treatment of hyperproliferative diseases, we used a long-range differential display–PCR to isolate retinoid-responsive genes from primary human keratinocytes. We have identified a cDNA, tazarotene-induced gene 3 (TIG3; Retinoic Acid Receptor Responder 3) showing significant homology to the class II tumor suppressor gene, H-rev 107. Tazarotene treatment increases TIG3 expression in primary human keratinocytes and in vivo in psoriatic lesions. Increased TIG3 expression is correlated with decreased proliferation. TIG3 is expressed in a number of tissues, and expression is reduced in cancer cell lines and some primary tumors. In breast cancer cell lines, retinoid-dependent TIG3 induction is observed in lines that are growth suppressed by retinoids but not in nonresponsive lines. Transient over-expression of TIG3 in T47D or Chinese hamster ovary cells inhibits colony expansion. Finally, studies in 293 cells expressing TIG3 linked to an inducible promoter demonstrated decreased proliferation with increased TIG3 levels. These studies suggest that TIG3 may be a growth regulator that mediates some of the growth suppressive effects of retinoids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sik, the mouse homologue of the breast tumor kinase Brk, is expressed in differentiating cells of the gastrointestinal tract and skin. We examined expression and activity of Sik in primary mouse keratinocytes and a mouse embryonic keratinocyte cell line (EMK). Calcium-induced differentiation of these cells has been shown to be accompanied by the activation of tyrosine kinases and rapid phosphorylation of a 65-kDa GTPase-activating protein (GAP)-associated protein (GAP-A.p65). We demonstrate that Sik is activated within 2 min after calcium addition in primary keratinocytes and EMK cells. In EMK cells, Sik binds GAP-A.p65, and this interaction is mediated by the Sik Src homology 2 domain. Although Sik directly complexes with GAP-A.p65, overexpression of wild-type or kinase defective Sik in EMK cells does not lead to detectable changes in GAP-A.p65 phosphorylation. These data suggest that Sik is not responsible for phosphorylation of GAP-A.p65. GAP-A.p65 may act as an adapter protein, bringing Sik into proximity of an unidentified substrate. Overexpression of Sik in EMK cells results in increased expression of filaggrin during differentiation, supporting a role for Sik in differentiation.