924 resultados para J22 - Time Allocation and Labor Supply
Resumo:
In this study, we apply the inter-regional input–output model to explain the relationship between China’s inter-regional spillover of CO2 emissions and domestic supply chains for 2002 and 2007. Based on this model, we propose alternative indicators such as the trade in CO2 emissions, CO2 emissions in trade, regional trade balances, and comparative advantage of CO2 emissions. The empirical results not only reveal the nature and significance of inter-regional environmental spillover within China’s domestic regions but also demonstrate how CO2 emissions are created and distributed across regions via domestic production networks. The main finding shows that a region’s CO2 emissions depend on not only its intra-regional production technique, energy use efficiency but also its position and participation degree in domestic and global supply chains.
Resumo:
International production fragmentation has been a global trend for decades, becoming especially important in Asia where the manufacturing process is fragmented into stages and dispersed around the region. This paper examines the effects of input and output tariff reductions on labor demand elasticities at the firm level. For this purpose, we consider a simple heterogenous firm model in which firms are allowed to export their products and to use imported intermediate inputs. The model predicts that only productive firms can use imported intermediate inputs (outsourcing) and tend to have larger constant-output labor demand elasticities. Input tariff reductions would lower the factor shares of labor for these productive firms and raise conditional labor demand elasticities further. We test these empirical predictions, constructing Chinese firm-level panel data over the 2000--2006 period. Controlling for potential tariff endogeneity by instruments, our empirical studies generally support these predictions.
Resumo:
Migrant and labor issues are a primary concern in the Arab Gulf countries. With focus on the economic and political conditions that influence actors' decisions when framing labor policies, this study analyzes how preferences of such policies are formed and explains why the governments of the Arab Gulf countries attempt to implement less economical policies. The findings suggest that governments avoid concessions for enterprises required to implement more economical policies and chose uneconomical ones to maintain authoritarian regimes.
Resumo:
Virtualization techniques have received increased attention in the field of embedded real-time systems. Such techniques provide a set of virtual machines that run on a single hardware platform, thus allowing several application programs to be executed as though they were running on separate machines, with isolated memory spaces and a fraction of the real processor time available to each of them.This papers deals with some problems that arise when implementing real-time systems written in Ada on a virtual machine. The effects of virtualization on the performance of the Ada real-time services are analysed, and requirements for the virtualization layer are derived. Virtual-machine time services are also defined in order to properly support Ada real-time applications. The implementation of the ORK+ kernel on the XtratuM supervisor is used as an example.
Resumo:
The uncertainty associated to the forecast of photovoltaic generation is a major drawback for the widespread introduction of this technology into electricity grids. This uncertainty is a challenge in the design and operation of electrical systems that include photovoltaic generation. Demand-Side Management (DSM) techniques are widely used to modify energy consumption. If local photovoltaic generation is available, DSM techniques can use generation forecast to schedule the local consumption. On the other hand, local storage systems can be used to separate electricity availability from instantaneous generation; therefore, the effects of forecast error in the electrical system are reduced. The effects of uncertainty associated to the forecast of photovoltaic generation in a residential electrical system equipped with DSM techniques and a local storage system are analyzed in this paper. The study has been performed in a solar house that is able to displace a residential user?s load pattern, manage local storage and estimate forecasts of electricity generation. A series of real experiments and simulations have carried out on the house. The results of this experiments show that the use of Demand Side Management (DSM) and local storage reduces to 2% the uncertainty on the energy exchanged with the grid. In the case that the photovoltaic system would operate as a pure electricity generator feeding all generated electricity into grid, the uncertainty would raise to around 40%.
Resumo:
Equations for extreme runup worked out from several experimental studies are compared. Infragraviatory oscillations dominate the swash in a dissipative state but not in intermediate - reflective states. Therefore two kinds of equation depending on either significant wave height, H-0, or the Iribarren number, xi(0), should be used. Through a sand bed physical model with a uniform sand bed slope, equations are proposed for both beach states, and results are compared with precedent field and physical model experiments. Once the equations are chosen, the time-longshore variability in a medium - long term time scale of the foreshore slope is evaluated in two extreme cases relating to the Spanish coast. The Salinas beach on the North coast (Bay of Biscay) displayed a permanent dissipative beach state with small variations in the beach foreshore slope both along the shore and in time, so foreshore slope deviations in a medium-long term period were irrelevant and extreme runup is predicted with the wave height worked out from the design return period. Peniscola beach on the East coast (Mediterranean sea) displayed an intermediate state. If only time variations are analysed, variations in determining extreme runup are irrelevant. In contrast, significant differences were found when the longshore variations were studied in this Mediterranean beach.
Resumo:
Protein folding occurs on a time scale ranging from milliseconds to minutes for a majority of proteins. Computer simulation of protein folding, from a random configuration to the native structure, is nontrivial owing to the large disparity between the simulation and folding time scales. As an effort to overcome this limitation, simple models with idealized protein subdomains, e.g., the diffusion–collision model of Karplus and Weaver, have gained some popularity. We present here new results for the folding of a four-helix bundle within the framework of the diffusion–collision model. Even with such simplifying assumptions, a direct application of standard Brownian dynamics methods would consume 10,000 processor-years on current supercomputers. We circumvent this difficulty by invoking a special Brownian dynamics simulation. The method features the calculation of the mean passage time of an event from the flux overpopulation method and the sampling of events that lead to productive collisions even if their probability is extremely small (because of large free-energy barriers that separate them from the higher probability events). Using these developments, we demonstrate that a coarse-grained model of the four-helix bundle can be simulated in several days on current supercomputers. Furthermore, such simulations yield folding times that are in the range of time scales observed in experiments.
Resumo:
As additivity is a very useful property for a distance measure, a general additive distance is proposed under the stationary time-reversible (SR) model of nucleotide substitution or, more generally, under the stationary, time-reversible, and rate variable (SRV) model, which allows rate variation among nucleotide sites. A method for estimating the mean distance and the sampling variance is developed. In addition, a method is developed for estimating the variance-covariance matrix of distances, which is useful for the statistical test of phylogenies and molecular clocks. Computer simulation shows (i) if the sequences are longer than, say, 1000 bp, the SR method is preferable to simpler methods; (ii) the SR method is robust against deviations from time-reversibility; (iii) when the rate varies among sites, the SRV method is much better than the SR method because the distance is seriously underestimated by the SR method; and (iv) our method for estimating the sampling variance is accurate for sequences longer than 500 bp. Finally, a test is constructed for testing whether DNA evolution follows a general Markovian model.
Resumo:
Information of crop phenology is essential for evaluating crop productivity. In a previous work, we determined phenological stages with remote sensing data using a dynamic system framework and an extended Kalman filter (EKF) approach. In this paper, we demonstrate that the particle filter is a more reliable method to infer any phenological stage compared to the EKF. The improvements achieved with this approach are discussed. In addition, this methodology enables the estimation of key cultivation dates, thus providing a practical product for many applications. The dates of some important stages, as the sowing date and the day when the crop reaches the panicle initiation stage, have been chosen to show the potential of this technique.