296 resultados para Invariants.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the relations of shift equivalence and strong shift equivalence for matrices over a ring $\mathcal{R}$, and establish a connection between these relations and algebraic K-theory. We utilize this connection to obtain results in two areas where the shift and strong shift equivalence relations play an important role: the study of finite group extensions of shifts of finite type, and the Generalized Spectral Conjectures of Boyle and Handelman for nonnegative matrices over subrings of the real numbers. We show the refinement of the shift equivalence class of a matrix $A$ over a ring $\mathcal{R}$ by strong shift equivalence classes over the ring is classified by a quotient $NK_{1}(\mathcal{R}) / E(A,\mathcal{R})$ of the algebraic K-group $NK_{1}(\calR)$. We use the K-theory of non-commutative localizations to show that in certain cases the subgroup $E(A,\mathcal{R})$ must vanish, including the case $A$ is invertible over $\mathcal{R}$. We use the K-theory connection to clarify the structure of algebraic invariants for finite group extensions of shifts of finite type. In particular, we give a strong negative answer to a question of Parry, who asked whether the dynamical zeta function determines up to finitely many topological conjugacy classes the extensions by $G$ of a fixed mixing shift of finite type. We apply the K-theory connection to prove the equivalence of a strong and weak form of the Generalized Spectral Conjecture of Boyle and Handelman for primitive matrices over subrings of $\mathbb{R}$. We construct explicit matrices whose class in the algebraic K-group $NK_{1}(\mathcal{R})$ is non-zero for certain rings $\mathcal{R}$ motivated by applications. We study the possible dynamics of the restriction of a homeomorphism of a compact manifold to an isolated zero-dimensional set. We prove that for $n \ge 3$ every compact zero-dimensional system can arise as an isolated invariant set for a homeomorphism of a compact $n$-manifold. In dimension two, we provide obstructions and examples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is concerned with the question of when the double branched cover of an alternating knot can arise by Dehn surgery on a knot in S^3. We approach this problem using a surgery obstruction, first developed by Greene, which combines Donaldson's Diagonalization Theorem with the $d$-invariants of Ozsvath and Szabo's Heegaard Floer homology. This obstruction shows that if the double branched cover of an alternating knot or link L arises by surgery on S^3, then for any alternating diagram the lattice associated to the Goeritz matrix takes the form of a changemaker lattice. By analyzing the structure of changemaker lattices, we show that the double branched cover of L arises by non-integer surgery on S^3 if and only if L has an alternating diagram which can be obtained by rational tangle replacement on an almost-alternating diagram of the unknot. When one considers half-integer surgery the resulting tangle replacement is simply a crossing change. This allows us to show that an alternating knot has unknotting number one if and only if it has an unknotting crossing in every alternating diagram. These techniques also produce several other interesting results: they have applications to characterizing slopes of torus knots; they produce a new proof for a theorem of Tsukamoto on the structure of almost-alternating diagrams of the unknot; and they provide several bounds on surgeries producing the double branched covers of alternating knots which are direct generalizations of results previously known for lens space surgeries. Here, a rational number p/q is said to be characterizing slope for K in S^3 if the oriented homeomorphism type of the manifold obtained by p/q-surgery on K determines K uniquely. The thesis begins with an exposition of the changemaker surgery obstruction, giving an amalgamation of results due to Gibbons, Greene and the author. It then gives background material on alternating knots and changemaker lattices. The latter part of the thesis is then taken up with the applications of this theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé : Le vieillissement démographique est statistiquement indiscutable au Québec. Ce singulier trompeur masque les différentes manières de vieillir. Pour ceux qui ne parviennent pas à vieillir en santé, les solidarités familiales, comme les solidarités institutionnelles, c’est à dire publiques viennent en principe compenser ce qu’il est convenu de désigner de perte d’autonomie. Les politiques de santé publique au Québec organisent les services de soutien à domicile sous condition d’avoir estimé la situation de la personne avec l’outil d’évaluation multiclientèle (OEMC). Il est en usage dans l’ensemble du réseau de la santé et des services sociaux, et utilisé par les professionnels dont les travailleuses et les travailleurs sociaux (TS). Or, la gérontologie est peu soutenue dans la formation initiale des TS. Nous nous sommes interrogée sur les savoirs mobilisés par les TS quand ils évaluent. S’agissant des savoirs inscrits dans la pratique, nous avons orienté la recherche dans les théories de l’activité, la didactique professionnelle et le cadre conceptuel de la médiation. Nous avons étudié l’activité de professionnels en travail social expérimentés afin d’identifier certains des savoirs mobilisés pour les rendre disponibles à la formation des étudiant (e)s en travail social au Québec. Cent-cinquante heures d’observations et vingt-deux entretiens individuels et collectifs ont été réalisés avec des intervenants volontaires du service de soutien à domicile. Les résultats préliminaires de la recherche ont été présentés lors de groupes de discussion avec les TS ayant participé à la recherche, puis avec des enseignants en travail social. Nos résultats permettent de décrire les procédures de l’évaluation dans l’organisation du service d’aide à domicile et d’en différencier le processus de l’activité par laquelle le TS évalue l’autonomie fonctionnelle de la personne. Nous constatons que les savoirs mobilisés par les TS reposent premièrement sur une connaissance fine du territoire, de l’outil d’évaluation et des institutions. Un deuxième registre de savoir concerne la conceptualisation de l’autonomie fonctionnelle par l’outil OEMC comme objet et domaine d’intervention des TS. Enfin, un troisième registre se réfère aux savoirs mobilisés pour entrer en relation avec les personnes âgées, avec leur entourage. Or, ces trois registres de savoir n’apparaissent pas dans le discours des TS et résultent de notre propre analyse sur leur pratique. L’évaluation de l’autonomie fonctionnelle analysée par le concept de médiation est révélatrice du rapport aux savoirs du TS. S’agissant de savoirs de la pratique, nous constatons que leur classification entre les catégories usuelles de savoirs théoriques ou pratiques était inopérante. Nous empruntons le vocabulaire de la didactique professionnelle : celui des invariants opératoires reliés à l’autonomie fonctionnelle et celui des schèmes d’activité reliés à l’activité d’évaluation. C’est ainsi que nous avons identifié deux moments dans l’évaluation. Le premier assemble la collecte des informations et l’analyse des données. L’autonomie fonctionnelle se décline dans des conditions d’existence de la personne sur l’axe allant de la mobilité à la cognition avec comme balises d’intervention la sécurité et l’intégrité de la personne. Dans ce processus itératif, le TS identifie avec la personne ce qui nuit à son quotidien. L’évaluation formule comment résoudre cette incidence, comment la perte d’autonomie pourrait être compensée. La collecte d’information et le raisonnement du TS est alors un mouvement itératif, les deux éléments du processus sont liés et en continu. Le second moment de l’évaluation apparait si, dans le processus itératif, le TS perçoit une dissonance. Il est essentiel d’en identifier la nature pour la prendre en compte et maintenir la finalité de l’activité qui consiste à évaluer l’autonomie fonctionnelle à des fins compensatrices. Le TS doit identifier l’objet de la dissonance pour pouvoir cerner avec la personne le besoin inhérent à la perte d’autonomie et envisager d’y remédier. La prise en compte de cette dissonance vient ralentir le déroulement de l’activité. Le raisonnement qui, jusque-là, était relié à la collecte d’informations s’en dissocie pour analyser ce qui vient faire obstacle à l’activité d’évaluation à partir de la situation. Les composantes qui génèrent la dissonance paraissent reliées à la quotidienneté, aux conditions de vie à domicile de la personne (cohérence/incohérence, refus de services, autonégligence, maltraitance, agressivité). La dissonance génère une activité plus complexe pour évaluer la situation. L’autonomie fonctionnelle se décline toujours sur l’axe mobilité/cognition avec comme balises d’intervention la sécurité et l’intégrité de la personne. Or, pour ce faire, les TS raisonnent selon trois schèmes. Dans les situations où, pour décider de la suite du dossier, il faut en référer à une norme (de service, de profession, etc.) le raisonnement est déontologique. Il est aussi des situations où le TS agit au regard de valeurs et de représentations qui relèvent de sa sphère personnelle. Nous désignons ce raisonnement d’instinctuel. Enfin, le TS peut naviguer entre ces deux orientations et choisir la voie du raisonnement clinique que nous qualifions d’éthique et se rapproche alors des pratiques prudentielles qui sont marquées par l’incertitude.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

123 p.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho visa a análise coreográfica das Sevilhanas através da observação sistemática do comportamento motor, pretendendo definir a Estrutura de Composição Coreográfica desta dança, através da identificação de invariantes. Objetivou-se apresentar a coreografia de Sevilhanas de forma esquematizada, numa tabela que indique a estrutura musical, coreográfica e espacial. Para cumprir o objetivo principal, procedeu-se à identificação e descrição dos passos que constituem a coreografia; à apresentação de uma proposta de terminologia para os passos; e à identificação das constantes coreográficas que permitem reconhecer a Estrutura de Composição Coreográfica. Os dados foram obtidos a partir da observação sistemática de 15 coreografias de Sevilhanas Normais retiradas de 15 vídeos didáticos realizados com o intuito de ensinar a dançar Sevilhanas. No decorrer do estudo, foram também observadas 3 coreografias de Sevilhanas Boleras. Os resultados permitem concluir que as Sevilhanas Normais têm uma Estrutura de Composição Coreográfica dividida em duas componentes, a Estrutura Coreográfica Base e a Estrutura Coreográfica Específica, pelo que se avançou com a definição do Esquema Coreográfico das Sevilhanas Normais. Concluiu-se também que a coreografia de Sevilhanas Normais é diferente da coreografia de Sevilhanas Boleras, apesar de a Estrutura Coreográfica Base ser a mesma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Urbanismo, apresentada na Faculdade de Arquitetura da Universidade de Lisboa, para obtenção do grau de Doutor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents studies of the role of disorder in non-equilibrium quantum systems. The quantum states relevant to dynamics in these systems are very different from the ground state of the Hamiltonian. Two distinct systems are studied, (i) periodically driven Hamiltonians in two dimensions, and (ii) electrons in a one-dimensional lattice with power-law decaying hopping amplitudes. In the first system, the novel phases that are induced from the interplay of periodic driving, topology and disorder are studied. In the second system, the Anderson transition in all the eigenstates of the Hamiltonian are studied, as a function of the power-law exponent of the hopping amplitude.

In periodically driven systems the study focuses on the effect of disorder in the nature of the topology of the steady states. First, we investigate the robustness to disorder of Floquet topological insulators (FTIs) occurring in semiconductor quantum wells. Such FTIs are generated by resonantly driving a transition between the valence and conduction band. We show that when disorder is added, the topological nature of such FTIs persists as long as there is a gap at the resonant quasienergy. For strong enough disorder, this gap closes and all the states become localized as the system undergoes a transition to a trivial insulator.

Interestingly, the effects of disorder are not necessarily adverse, disorder can also induce a transition from a trivial to a topological system, thereby establishing a Floquet Topological Anderson Insulator (FTAI). Such a state would be a dynamical realization of the topological Anderson insulator. We identify the conditions on the driving field necessary for observing such a transition. We realize such a disorder induced topological Floquet spectrum in the driven honeycomb lattice and quantum well models.

Finally, we show that two-dimensional periodically driven quantum systems with spatial disorder admit a unique topological phase, which we call the anomalous Floquet-Anderson insulator (AFAI). The AFAI is characterized by a quasienergy spectrum featuring chiral edge modes coexisting with a fully localized bulk. Such a spectrum is impossible for a time-independent, local Hamiltonian. These unique characteristics of the AFAI give rise to a new topologically protected nonequilibrium transport phenomenon: quantized, yet nonadiabatic, charge pumping. We identify the topological invariants that distinguish the AFAI from a trivial, fully localized phase, and show that the two phases are separated by a phase transition.

The thesis also present the study of disordered systems using Wegner's Flow equations. The Flow Equation Method was proposed as a technique for studying excited states in an interacting system in one dimension. We apply this method to a one-dimensional tight binding problem with power-law decaying hoppings. This model presents a transition as a function of the exponent of the decay. It is shown that the the entire phase diagram, i.e. the delocalized, critical and localized phases in these systems can be studied using this technique. Based on this technique, we develop a strong-bond renormalization group that procedure where we solve the Flow Equations iteratively. This renormalization group approach provides a new framework to study the transition in this system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer simulation programs are essential tools for scientists and engineers to understand a particular system of interest. As expected, the complexity of the software increases with the depth of the model used. In addition to the exigent demands of software engineering, verification of simulation programs is especially challenging because the models represented are complex and ridden with unknowns that will be discovered by developers in an iterative process. To manage such complexity, advanced verification techniques for continually matching the intended model to the implemented model are necessary. Therefore, the main goal of this research work is to design a useful verification and validation framework that is able to identify model representation errors and is applicable to generic simulators. The framework that was developed and implemented consists of two parts. The first part is First-Order Logic Constraint Specification Language (FOLCSL) that enables users to specify the invariants of a model under consideration. From the first-order logic specification, the FOLCSL translator automatically synthesizes a verification program that reads the event trace generated by a simulator and signals whether all invariants are respected. The second part consists of mining the temporal flow of events using a newly developed representation called State Flow Temporal Analysis Graph (SFTAG). While the first part seeks an assurance of implementation correctness by checking that the model invariants hold, the second part derives an extended model of the implementation and hence enables a deeper understanding of what was implemented. The main application studied in this work is the validation of the timing behavior of micro-architecture simulators. The study includes SFTAGs generated for a wide set of benchmark programs and their analysis using several artificial intelligence algorithms. This work improves the computer architecture research and verification processes as shown by the case studies and experiments that have been conducted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a method to create higher orbital states of ultracold atoms in the Mott regime of an optical lattice. This is done by periodically modulating the position of the trap minima (known as shaking) and controlling the interference term of the lasers creating the lattice. These methods are combined with techniques of shortcuts to adiabaticity. As an example of this, we show specifically how to create an anti-ferromagnetic type ordering of angular momentum states of atoms. The specific pulse sequences are designed using Lewis-Riesenfeld invariants and a fourlevel model for each well. The results are compared with numerical simulations of the full Schrodinger equation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Following the seminal work of Zhuang, connected Hopf algebras of finite GK-dimension over algebraically closed fields of characteristic zero have been the subject of several recent papers. This thesis is concerned with continuing this line of research and promoting connected Hopf algebras as a natural, intricate and interesting class of algebras. We begin by discussing the theory of connected Hopf algebras which are either commutative or cocommutative, and then proceed to review the modern theory of arbitrary connected Hopf algebras of finite GK-dimension initiated by Zhuang. We next focus on the (left) coideal subalgebras of connected Hopf algebras of finite GK-dimension. They are shown to be deformations of commutative polynomial algebras. A number of homological properties follow immediately from this fact. Further properties are described, examples are considered and invariants are constructed. A connected Hopf algebra is said to be "primitively thick" if the difference between its GK-dimension and the vector-space dimension of its primitive space is precisely one . Building on the results of Wang, Zhang and Zhuang,, we describe a method of constructing such a Hopf algebra, and as a result obtain a host of new examples of such objects. Moreover, we prove that such a Hopf algebra can never be isomorphic to the enveloping algebra of a semisimple Lie algebra, nor can a semisimple Lie algebra appear as its primitive space. It has been asked in the literature whether connected Hopf algebras of finite GK-dimension are always isomorphic as algebras to enveloping algebras of Lie algebras. We provide a negative answer to this question by constructing a counterexample of GK-dimension 5. Substantial progress was made in determining the order of the antipode of a finite dimensional pointed Hopf algebra by Taft and Wilson in the 1970s. Our final main result is to show that the proof of their result can be generalised to give an analogous result for arbitrary pointed Hopf algebras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Um semigrupo numérico é um submonoide de (N, +) tal que o seu complementar em N é finito. Neste trabalho estudamos alguns invariantes de um semigrupo numérico S tais como: multiplicidade, dimensão de imersão, número de Frobenius, falhas e conjunto Apéry de S. Caracterizamos uma apresentação minimal para um semigrupo numérico S e descrevemos um método algorítmico para determinar esta apresentação. Definimos um semigrupo numérico irredutível como um semigrupo numérico que não pode ser expresso como intersecção de dois semigrupos numéricos que o contenham propriamente. A finalizar este trabalho, estudamos os semigrupos numéricos irredutíveis e obtemos a decomposição de um semigrupo numérico em irredutíveis. ABSTRACT: A numerical semigroup is a submonoid of (N, +) such that its complement of N is finite. ln this work we study some invariants of a numerical semigroup S such as: multiplicity, embedding dimension, Frobenius number, gaps and Apéry set of S. We characterize a minimal presentation of a numerical semigroup S and describe an algorithmic procedure which allows us to compute a minimal presentation of S. We define an irreducible numerical semigroup as a numerical semigroup that cannot be expressed as the intersection of two numerical semigroups properly containing it. Concluding this work, we study and characterize irreducible numerical semigroups, and describe methods for computing decompositions of a numerical semigroup into irreducible numerical semigroups.