980 resultados para Interior point methods


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last decade has witnessed an exponential growth of activities in the field of nanoscience and nanotechnology worldwide, driven both by the excitement of understanding new science and by the potential hope for applications and economic impacts. The largest activity in this field up to date has been in the synthesis and characterization of new materials consisting of particles with dimensions in the order of a few nanometers, so-called nanocrystalline materials. [1-8] Semiconductor nanomaterials such as III/V or II/VI compound semiconductors exhibit strong quantum confinement behavior in the size range from 1 to 10 nm. Therefore, preparation of high quality semiconductor nanocrystals has been a challenge for synthetic chemists, leading to the recent rapid progress in delivering a wide variety of semiconducting nanomaterials. Semiconductor nanocrystals, also called quantum dots, possess physical properties distinctly different from those of the bulk material. Typically, in the size range from 1 to 10 nm, when the particle size is changed, the band gap between the valence and the conduction band will change, too. In a simple approximation a particle in a box model has been used to describe the phenomenon[9]: at nanoscale dimensions the degenerate energy states of a semiconductor separate into discrete states and the system behaves like one big molecule. The size-dependent transformation of the energy levels of the particles is called “quantum size-effect”. Quantum confinement of both the electron and hole in all three dimensions leads to an increase in the effective bandgap of the material with decreasing crystallite size. Consequently, both the optical absorption and emission of semiconductor nanaocrystals shift to the blue (higher energies) as the size of the particles gets smaller. This color tuning is well documented for CdSe nanocrystals whose absorption and emission covers almost the whole visible spectral range. As particle sizes become smaller the ratio of surface atoms to those in the interior increases, which has a strong impact on particle properties, too. Prominent examples are the low melting point [8] and size/shape dependent pressure resistance [10] of semiconductor nanocrystals. Given the size dependence of particle properties, chemists and material scientists now have the unique opportunity to change the electronic and chemical properties of a material by simply controlling the particle size. In particular, CdSe nanocrystals have been widely investigated. Mainly due to their size-dependent optoelectronic properties [11, 12] and flexible chemical processibility [13], they have played a distinguished role for a number of seminal studies [11, 12, 14, 15]. Potential technical applications have been discussed, too. [8, 16-27] Improvement of the optoelectronic properties of semiconductor nanocrystals is still a prominent research topic. One of the most important approaches is fabricating composite type-I core-shell structures which exhibit improved properties, making them attractive from both a fundamental and a practical point of view. Overcoating of nanocrystallites with higher band gap inorganic materials has been shown to increase the photoluminescence quantum yields by eliminating surface nonradiative recombination sites. [28] Particles passivated with inorganic shells are more robust than nanocrystals covered by organic ligands only and have greater tolerance to processing conditions necessary for incorporation into solid state structures or for other applications. Some examples of core-shell nanocrystals reported earlier include CdS on CdSe [29], CdSe on CdS, [30], ZnS on CdS, [31] ZnS on CdSe[28, 32], ZnSe on CdSe [33] and CdS/HgS/CdS [34]. The characterization and preparation of a new core-shell structure, CdSe nanocrystals overcoated by different shells (CdS, ZnS), is presented in chapter 4. Type-I core-shell structures as mentioned above greatly improve the photoluminescence quantum yield and chemical and photochemical stability of nanocrystals. The emission wavelengths of type-I core/shell nanocrystals typically only shows a small red-shift when compared to the plain core nanocrystals. [30, 31, 35] In contrast to type-I core-shell nanocrystals, only few studies have been conducted on colloidal type-II core/shell structures [36-38] which are characterized by a staggered alignment of conduction and valence bands giving rise to a broad tunability of absorption and emission wavelengths, as was shown for CdTe/CdSe core-shell nanocrystals. [36] The emission of type-II core/shell nanocrystals mainly originates from the radiative recombination of electron-hole pairs across the core-shell interface leading to a long photoluminescence lifetime. Type-II core/shell nanocrystals are promising with respect to photoconduction or photovoltaic applications as has been discussed in the literature.[39] Novel type-II core-shell structures with ZnTe cores are reported in chapter 5. The recent progress in the shape control of semiconductor nanocrystals opens new fields of applications. For instance, rod shaped CdSe nanocrystals can enhance the photo-electro conversion efficiency of photovoltaic cells, [40, 41] and also allow for polarized emission in light emitting diodes. [42, 43] Shape control of anisotropic nanocrystals can be achieved by the use of surfactants, [44, 45] regular or inverse micelles as regulating agents, [46, 47] electrochemical processes, [48] template-assisted [49, 50] and solution-liquid-solution (SLS) growth mechnism. [51-53] Recently, formation of various CdSe nanocrystal shapes has been reported by the groups of Alivisatos [54] and Peng, [55] respectively. Furthermore, it has been reported by the group of Prasad [56] that noble metal nanoparticles can induce anisotropic growth of CdSe nanocrystals at lower temperatures than typically used in other methods for preparing anisotropic CdSe structures. Although several approaches for anisotropic crystal growth have been reported by now, developing new synthetic methods for the shape control of colloidal semiconductor nanocrystals remains an important goal. Accordingly, we have attempted to utilize a crystal phase control approach for the controllable synthesis of colloidal ZnE/CdSe (E = S, Se, Te) heterostructures in a variety of morphologies. The complex heterostructures obtained are presented in chapter 6. The unique optical properties of nanocrystals make them appealing as in vivo and in vitro fluorophores in a variety of biological and chemical investigations, in which traditional fluorescence labels based on organic molecules fall short of providing long-term stability and simultaneous detection of multiple emission colours [References]. The ability to prepare water soluble nanocrystals with high stability and quantum yield has led to promising applications in cellular labeling, [57, 58] deep-tissue imaging, [59, 60] and assay labeling [61, 62]. Furthermore, appropriately solubilized nanocrystals have been used as donors in fluorescence resonance energy transfer (FRET) couples. [63-65] Despite recent progress, much work still needs to be done to achieve reproducible and robust surface functionalization and develop flexible (bio-) conjugation techniques. Based on multi-shell CdSe nanocrystals, several new solubilization and ligand exchange protocols have been developed which are presented in chapter 7. The organization of this thesis is as follows: A short overview describing synthesis and properties of CdSe nanocrystals is given in chapter 2. Chapter 3 is the experimental part providing some background information about the optical and analytical methods used in this thesis. The following chapters report the results of this work: synthesis and characterization of type-I multi-shell and type-II core/shell nanocrystals are described in chapter 4 and chapter 5, respectively. In chapter 6, a high–yield synthesis of various CdSe architectures by crystal phase control is reported. Experiments about surface modification of nanocrystals are described in chapter 7. At last, a short summary of the results is given in chapter 8.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present thesis is a contribution to the theory of algebras of pseudodifferential operators on singular settings. In particular, we focus on the $b$-calculus and the calculus on conformally compact spaces in the sense of Mazzeo and Melrose in connection with the notion of spectral invariant transmission operator algebras. We summarize results given by Gramsch et. al. on the construction of $Psi_0$-and $Psi*$-algebras and the corresponding scales of generalized Sobolev spaces using commutators of certain closed operators and derivations. In the case of a manifold with corners $Z$ we construct a $Psi*$-completion $A_b(Z,{}^bOmega^{1/2})$ of the algebra of zero order $b$-pseudodifferential operators $Psi_{b,cl}(Z, {}^bOmega^{1/2})$ in the corresponding $C*$-closure $B(Z,{}^bOmega^{12})hookrightarrow L(L^2(Z,{}^bOmega^{1/2}))$. The construction will also provide that localised to the (smooth) interior of Z the operators in the $A_b(Z, {}^bOmega^{1/2})$ can be represented as ordinary pseudodifferential operators. In connection with the notion of solvable $C*$-algebras - introduced by Dynin - we calculate the length of the $C*$-closure of $Psi_{b,cl}^0(F,{}^bOmega^{1/2},R^{E(F)})$ in $B(F,{}^bOmega^{1/2}),R^{E(F)})$ by localizing $B(Z, {}^bOmega^{1/2})$ along the boundary face $F$ using the (extended) indical familiy $I^B_{FZ}$. Moreover, we discuss how one can localise a certain solving ideal chain of $B(Z, {}^bOmega^{1/2})$ in neighbourhoods $U_p$ of arbitrary points $pin Z$. This localisation process will recover the singular structure of $U_p$; further, the induced length function $l_p$ is shown to be upper semi-continuous. We give construction methods for $Psi*$- and $C*$-algebras admitting only infinite long solving ideal chains. These algebras will first be realized as unconnected direct sums of (solvable) $C*$-algebras and then refined such that the resulting algebras have arcwise connected spaces of one dimensional representations. In addition, we recall the notion of transmission algebras on manifolds with corners $(Z_i)_{iin N}$ following an idea of Ali Mehmeti, Gramsch et. al. Thereby, we connect the underlying $C^infty$-function spaces using point evaluations in the smooth parts of the $Z_i$ and use generalized Laplacians to generate an appropriate scale of Sobolev spaces. Moreover, it is possible to associate generalized (solving) ideal chains to these algebras, such that to every $ninN$ there exists an ideal chain of length $n$ within the algebra. Finally, we discuss the $K$-theory for algebras of pseudodifferential operators on conformally compact manifolds $X$ and give an index theorem for these operators. In addition, we prove that the Dirac-operator associated to the metric of a conformally compact manifold $X$ is not a Fredholm operator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, the use of Reverse Engineering systems has got a considerable interest for a wide number of applications. Therefore, many research activities are focused on accuracy and precision of the acquired data and post processing phase improvements. In this context, this PhD Thesis deals with the definition of two novel methods for data post processing and data fusion between physical and geometrical information. In particular a technique has been defined for error definition in 3D points’ coordinates acquired by an optical triangulation laser scanner, with the aim to identify adequate correction arrays to apply under different acquisition parameters and operative conditions. Systematic error in data acquired is thus compensated, in order to increase accuracy value. Moreover, the definition of a 3D thermogram is examined. Object geometrical information and its thermal properties, coming from a thermographic inspection, are combined in order to have a temperature value for each recognizable point. Data acquired by an optical triangulation laser scanner are also used to normalize temperature values and make thermal data independent from thermal-camera point of view.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Decomposition based approaches are recalled from primal and dual point of view. The possibility of building partially disaggregated reduced master problems is investigated. This extends the idea of aggregated-versus-disaggregated formulation to a gradual choice of alternative level of aggregation. Partial aggregation is applied to the linear multicommodity minimum cost flow problem. The possibility of having only partially aggregated bundles opens a wide range of alternatives with different trade-offs between the number of iterations and the required computation for solving it. This trade-off is explored for several sets of instances and the results are compared with the ones obtained by directly solving the natural node-arc formulation. An iterative solution process to the route assignment problem is proposed, based on the well-known Frank Wolfe algorithm. In order to provide a first feasible solution to the Frank Wolfe algorithm, a linear multicommodity min-cost flow problem is solved to optimality by using the decomposition techniques mentioned above. Solutions of this problem are useful for network orientation and design, especially in relation with public transportation systems as the Personal Rapid Transit. A single-commodity robust network design problem is addressed. In this, an undirected graph with edge costs is given together with a discrete set of balance matrices, representing different supply/demand scenarios. The goal is to determine the minimum cost installation of capacities on the edges such that the flow exchange is feasible for every scenario. A set of new instances that are computationally hard for the natural flow formulation are solved by means of a new heuristic algorithm. Finally, an efficient decomposition-based heuristic approach for a large scale stochastic unit commitment problem is presented. The addressed real-world stochastic problem employs at its core a deterministic unit commitment planning model developed by the California Independent System Operator (ISO).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die Bor-Neuroneneinfang-Therapie (engl.: Boron Neutron Capture Therapy, BNCT) ist eine indirekte Strahlentherapie, welche durch die gezielte Freisetzung von dicht ionisierender Strahlung Tumorzellen zerstört. Die freigesetzten Ionen sind Spaltfragmente einer Kernreaktion, bei welcher das Isotop 10B ein niederenergetisches (thermisches) Neutron einfängt. Das 10B wird durch ein spezielles Borpräparat in den Tumorzellen angereichert, welches selbst nicht radioaktiv ist. rnAn der Johannes Gutenberg-Universität Mainz wurde die Forschung für die Anwendung eines klinischen Behandlungsprotokolls durch zwei Heilversuche bei Patienten mit kolorektalen Lebermetastasen an der Universität Pavia, Italien, angeregt, bei denen die Leber außerhalb des Körpers in einem Forschungsreaktor bestrahlt wurde. Als erster Schritt wurde in Kooperation verschiedener universitärer Institute eine klinische Studie zur Bestimmung klinisch relevanter Parameter wie der Borverteilung in verschiedenen Geweben und dem pharmakokinetischen Aufnahmeverhalten des Borpräparates initiiert.rnDie Borkonzentration in den Gewebeproben wurde hinsichtlich ihrer räumlichen Verteilung in verschiedenen Zellarealen bestimmt, um mehr über das Aufnahmeverhalten der Zellen für das BPA im Hinblick auf ihre biologischen Charakteristika zu erfahren. Die Borbestimung wurde per Quantitative Neutron Capture Radiography, Prompt Gamma Activation Analysis und Inductively Coupled Plasma Mass Spectroscopy parallel zur histologischen Analyse des Gewebes durchgeführt. Es war möglich zu zeigen, dass in Proben aus Tumorgewebe und aus tumorfreiem Gewebe mit unterschiedlichen morphologischen Eigenschaften eine sehr heterogene Borverteilung vorliegt. Die Ergebnisse der Blutproben werden für die Erstellung eines pharmakokinetischen Modells verwendet und sind in Übereinstimmung mit existierenden pharmakokinetische Modellen. Zusätzlich wurden die Methoden zur Borbestimmung über speziell hergestellte Referenzstandards untereinander verglichen. Dabei wurde eine gute Übereinstimmung der Ergebnisse festgestellt, ferner wurde für alle biologischen Proben Standardanalyseprotokolle erstellt.rnDie bisher erhaltenen Ergebnisse der klinischen Studie sind vielversprechend, lassen aber noch keine endgültigen Schlussfolgerungen hinsichtlich der Wirksamkeit von BNCT für maligne Lebererkrankungen zu. rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changepoint analysis is a well established area of statistical research, but in the context of spatio-temporal point processes it is as yet relatively unexplored. Some substantial differences with regard to standard changepoint analysis have to be taken into account: firstly, at every time point the datum is an irregular pattern of points; secondly, in real situations issues of spatial dependence between points and temporal dependence within time segments raise. Our motivating example consists of data concerning the monitoring and recovery of radioactive particles from Sandside beach, North of Scotland; there have been two major changes in the equipment used to detect the particles, representing known potential changepoints in the number of retrieved particles. In addition, offshore particle retrieval campaigns are believed may reduce the particle intensity onshore with an unknown temporal lag; in this latter case, the problem concerns multiple unknown changepoints. We therefore propose a Bayesian approach for detecting multiple changepoints in the intensity function of a spatio-temporal point process, allowing for spatial and temporal dependence within segments. We use Log-Gaussian Cox Processes, a very flexible class of models suitable for environmental applications that can be implemented using integrated nested Laplace approximation (INLA), a computationally efficient alternative to Monte Carlo Markov Chain methods for approximating the posterior distribution of the parameters. Once the posterior curve is obtained, we propose a few methods for detecting significant change points. We present a simulation study, which consists in generating spatio-temporal point pattern series under several scenarios; the performance of the methods is assessed in terms of type I and II errors, detected changepoint locations and accuracy of the segment intensity estimates. We finally apply the above methods to the motivating dataset and find good and sensible results about the presence and quality of changes in the process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of linear programming in various areas has increased with the significant improvement of specialized solvers. Linear programs are used as such to model practical problems, or as subroutines in algorithms such as formal proofs or branch-and-cut frameworks. In many situations a certified answer is needed, for example the guarantee that the linear program is feasible or infeasible, or a provably safe bound on its objective value. Most of the available solvers work with floating-point arithmetic and are thus subject to its shortcomings such as rounding errors or underflow, therefore they can deliver incorrect answers. While adequate for some applications, this is unacceptable for critical applications like flight controlling or nuclear plant management due to the potential catastrophic consequences. We propose a method that gives a certified answer whether a linear program is feasible or infeasible, or returns unknown'. The advantage of our method is that it is reasonably fast and rarely answers unknown'. It works by computing a safe solution that is in some way the best possible in the relative interior of the feasible set. To certify the relative interior, we employ exact arithmetic, whose use is nevertheless limited in general to critical places, allowing us to rnremain computationally efficient. Moreover, when certain conditions are fulfilled, our method is able to deliver a provable bound on the objective value of the linear program. We test our algorithm on typical benchmark sets and obtain higher rates of success compared to previous approaches for this problem, while keeping the running times acceptably small. The computed objective value bounds are in most of the cases very close to the known exact objective values. We prove the usability of the method we developed by additionally employing a variant of it in a different scenario, namely to improve the results of a Satisfiability Modulo Theories solver. Our method is used as a black box in the nodes of a branch-and-bound tree to implement conflict learning based on the certificate of infeasibility for linear programs consisting of subsets of linear constraints. The generated conflict clauses are in general small and give good rnprospects for reducing the search space. Compared to other methods we obtain significant improvements in the running time, especially on the large instances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, we consider the problem of solving large and sparse linear systems of saddle point type stemming from optimization problems. The focus of the thesis is on iterative methods, and new preconditioning srategies are proposed, along with novel spectral estimtates for the matrices involved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past two decades the work of a growing portion of researchers in robotics focused on a particular group of machines, belonging to the family of parallel manipulators: the cable robots. Although these robots share several theoretical elements with the better known parallel robots, they still present completely (or partly) unsolved issues. In particular, the study of their kinematic, already a difficult subject for conventional parallel manipulators, is further complicated by the non-linear nature of cables, which can exert only efforts of pure traction. The work presented in this thesis therefore focuses on the study of the kinematics of these robots and on the development of numerical techniques able to address some of the problems related to it. Most of the work is focused on the development of an interval-analysis based procedure for the solution of the direct geometric problem of a generic cable manipulator. This technique, as well as allowing for a rapid solution of the problem, also guarantees the results obtained against rounding and elimination errors and can take into account any uncertainties in the model of the problem. The developed code has been tested with the help of a small manipulator whose realization is described in this dissertation together with the auxiliary work done during its design and simulation phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well known that the early initiation of a specific antiinfective therapy is crucial to reduce the mortality in severe infection. Procedures culturing pathogens are the diagnostic gold standard in such diseases. However, these methods yield results earliest between 24 to 48 hours. Therefore, severe infections such as sepsis need to be treated with an empirical antimicrobial therapy, which is ineffective in an unknown fraction of these patients. Today's microbiological point of care tests are pathogen specific and therefore not appropriate for an infection with a variety of possible pathogens. Molecular nucleic acid diagnostics such as polymerase chain reaction (PCR) allow the identification of pathogens and resistances. These methods are used routinely to speed up the analysis of positive blood cultures. The newest PCR based system allows the identification of the 25 most frequent sepsis pathogens by PCR in parallel without previous culture in less than 6 hours. Thereby, these systems might shorten the time of possibly insufficient antiinfective therapy. However, these extensive tools are not suitable as point of care diagnostics. Miniaturization and automating of the nucleic acid based method is pending, as well as an increase of detectable pathogens and resistance genes by these methods. It is assumed that molecular PCR techniques will have an increasing impact on microbiological diagnostics in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complete basis set methods CBS-4, CBS-QB3, and CBS-APNO, and the Gaussian methods G2 and G3 were used to calculate the gas phase energy differences between six different carboxylic acids and their respective anions. Two different continuum methods, SM5.42R and CPCM, were used to calculate the free energy differences of solvation for the acids and their anions. Relative pKa values were calculated for each acid using one of the acids as a reference point. The CBS-QB3 and CBS-APNO gas phase calculations, combined with the CPCM/HF/6-31+G(d)//HF/6-31G(d) or CPCM/HF/6-31+G(d)//HF/6-31+G(d) continuum solvation calculations on the lowest energy gas phase conformer, and with the conformationally averaged values, give results accurate to ½ pKa unit. © 2001 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To compare clinical outcomes after laparoscopic cholecystectomy (LC) for acute cholecystitis performed at various time-points after hospital admission. Background: Symptomatic gallstones represent an important public health problem with LC the treatment of choice. LC is increasingly offered for acute cholecystitis, however, the optimal time-point for LC in this setting remains a matter of debate. Methods: Analysis was based on the prospective database of the Swiss Association of Laparoscopic and Thoracoscopic Surgery and included patients undergoing emergency LC for acute cholecystitis between 1995 and 2006, grouped according to the time-points of LC since hospital admission (admission day (d0), d1, d2, d3, d4/5, d ≥6). Linear and generalized linear regression models assessed the effect of timing of LC on intra- or postoperative complications, conversion and reoperation rates and length of postoperative hospital stay. Results: Of 4113 patients, 52.8% were female, median age was 59.8 years. Delaying LC resulted in significantly higher conversion rates (from 11.9% at d0 to 27.9% at d ≥6 days after admission, P < 0.001), surgical postoperative complications (5.7% to 13%, P < 0.001) and re-operation rates (0.9% to 3%, P = 0.007), with a significantly longer postoperative hospital stay (P < 0.001). Conclusions: Delaying LC for acute cholecystitis has no advantages, resulting in significantly increased conversion/re-operation rate, postoperative complications and longer postoperative hospital stay. This investigation—one of the largest in the literature—provides compelling evidence that acute cholecystitis merits surgery within 48 hours of hospital admission if impact on the patient and health care system is to be minimized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives To compare the use of pair-wise meta-analysis methods to multiple treatment comparison (MTC) methods for evidence-based health-care evaluation to estimate the effectiveness and cost-effectiveness of alternative health-care interventions based on the available evidence. Methods Pair-wise meta-analysis and more complex evidence syntheses, incorporating an MTC component, are applied to three examples: 1) clinical effectiveness of interventions for preventing strokes in people with atrial fibrillation; 2) clinical and cost-effectiveness of using drug-eluting stents in percutaneous coronary intervention in patients with coronary artery disease; and 3) clinical and cost-effectiveness of using neuraminidase inhibitors in the treatment of influenza. We compare the two synthesis approaches with respect to the assumptions made, empirical estimates produced, and conclusions drawn. Results The difference between point estimates of effectiveness produced by the pair-wise and MTC approaches was generally unpredictable—sometimes agreeing closely whereas in other instances differing considerably. In all three examples, the MTC approach allowed the inclusion of randomized controlled trial evidence ignored in the pair-wise meta-analysis approach. This generally increased the precision of the effectiveness estimates from the MTC model. Conclusions The MTC approach to synthesis allows the evidence base on clinical effectiveness to be treated as a coherent whole, include more data, and sometimes relax the assumptions made in the pair-wise approaches. However, MTC models are necessarily more complex than those developed for pair-wise meta-analysis and thus could be seen as less transparent. Therefore, it is important that model details and the assumptions made are carefully reported alongside the results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background and Aims: Data on the influence of calibration on accuracy of continuous glucose monitoring (CGM) are scarce. The aim of the present study was to investigate whether the time point of calibration has an influence on sensor accuracy and whether this effect differs according to glycemic level. Subjects and Methods: Two CGM sensors were inserted simultaneously in the abdomen on either side of 20 individuals with type 1 diabetes. One sensor was calibrated predominantly using preprandial glucose (calibration(PRE)). The other sensor was calibrated predominantly using postprandial glucose (calibration(POST)). At minimum three additional glucose values per day were obtained for analysis of accuracy. Sensor readings were divided into four categories according to the glycemic range of the reference values (low, ≤4 mmol/L; euglycemic, 4.1-7 mmol/L; hyperglycemic I, 7.1-14 mmol/L; and hyperglycemic II, >14 mmol/L). Results: The overall mean±SEM absolute relative difference (MARD) between capillary reference values and sensor readings was 18.3±0.8% for calibration(PRE) and 21.9±1.2% for calibration(POST) (P<0.001). MARD according to glycemic range was 47.4±6.5% (low), 17.4±1.3% (euglycemic), 15.0±0.8% (hyperglycemic I), and 17.7±1.9% (hyperglycemic II) for calibration(PRE) and 67.5±9.5% (low), 24.2±1.8% (euglycemic), 15.5±0.9% (hyperglycemic I), and 15.3±1.9% (hyperglycemic II) for calibration(POST). In the low and euglycemic ranges MARD was significantly lower in calibration(PRE) compared with calibration(POST) (P=0.007 and P<0.001, respectively). Conclusions: Sensor calibration predominantly based on preprandial glucose resulted in a significantly higher overall sensor accuracy compared with a predominantly postprandial calibration. The difference was most pronounced in the hypo- and euglycemic reference range, whereas both calibration patterns were comparable in the hyperglycemic range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

REASONS FOR PERFORMING STUDY: Evidence-based information is limited on distribution of local anaesthetic solution following perineural analgesia of the palmar (Pa) and palmar metacarpal (PaM) nerves in the distal aspect of the metacarpal (Mc) region ('low 4-point nerve block'). OBJECTIVES: To demonstrate the potential distribution of local anaesthetic solution after a low 4-point nerve block using a radiographic contrast model. METHODS: A radiodense contrast medium was injected subcutaneously over the medial or the lateral Pa nerve at the junction of the proximal three-quarters and distal quarter of the Mc region (Pa injection) and over the ipsilateral PaM nerve immediately distal to the distal aspect of the second or fourth Mc bones (PaM injection) in both forelimbs of 10 mature horses free from lameness. Radiographs were obtained 0, 10 and 20 min after injection and analysed subjectively and objectively. Methylene blue and a radiodense contrast medium were injected in 20 cadaver limbs using the same techniques. Radiographs were obtained and the limbs dissected. RESULTS: After 31/40 (77.5%) Pa injections, the pattern of the contrast medium suggested distribution in the neurovascular bundle. There was significant proximal diffusion with time, but the main contrast medium patch never progressed proximal to the mid-Mc region. The radiological appearance of 2 limbs suggested that contrast medium was present in the digital flexor tendon sheath (DFTS). After PaM injections, the contrast medium was distributed diffusely around the injection site in the majority of the limbs. In cadaver limbs, after Pa injections, the contrast medium and the dye were distributed in the neurovascular bundle in 8/20 (40%) limbs and in the DFTS in 6/20 (30%) of limbs. After PaM injections, the contrast and dye were distributed diffusely around the injection site in 9/20 (45%) limbs and showed diffuse and tubular distribution in 11/20 (55%) limbs. CONCLUSIONS AND POTENTIAL RELEVANCE: Proximal diffusion of local anaesthetic solution after a low 4-point nerve block is unlikely to be responsible for decreasing lameness caused by pain in the proximal Mc region. The DFTS may be penetrated inadvertently when performing a low 4-point nerve block.