936 resultados para Interdisciplinary approach to knowledge
Resumo:
One in 3,000 people in the US are born with cystic fibrosis (CF), a genetic disorder affecting the reproductive system, pancreas, and lungs. Lung disease caused by chronic bacterial and fungal infections is the leading cause of morbidity and mortality in CF. Identities of the microbes are traditionally determined by culturing followed by phenotypic and biochemical assays. It was first thought that the bacterial infections were caused by a select handful of bacteria such as S. aureus, H. influenzae, B. cenocepacia, and P. aeruginosa. With the advent of PCR and molecular techniques, the polymicrobial nature of the CF lung became evident. The CF lung contains numerous bacteria and the communities are diverse and unique to each patient. The total complexity of the bacterial infections is still being determined. In addition, only a few members of the fungal communities have been identified. Much of the fungal community composition is still a mystery. This dissertation addresses this gap in knowledge. A snap shot of CF sputa bacterial community was obtained using the length heterogeneity-PCR community profiling technique. The profiles show that south Florida CF patients have a unique, diverse, and dynamic bacterial community which changes over time. The identities of the bacteria and fungi present were determined using the state-of-the-art 454 sequencing. Sequencing results show that the CF lung microbiome contains commonly cultured pathogenic bacteria, organisms considered a part of the healthy core biome, and novel organisms. Understanding the dynamic changes of these identified microbes will ultimately lead to better therapeutical interventions. Early detection is key in reducing the lung damage caused by chronic infections. Thus, there is a need for accurate and sensitive diagnostic tests. This issue was addressed by designing a bacterial diagnostic tool targeted towards CF pathogens using SPR. By identifying the organisms associated with the CF lung and understanding their community interactions, patients can receive better treatment and live longer.
Resumo:
Funding for this study was received from the Chief Scientist Office for Scotland. We would like to thank Asthma UK and Asthma UK Scotland for facilitating the advertisement of the study pilot and consultative user group. Thanks to Dr Mark Grindle for his helpful discussions concerning narrative. Thanks also to Mr Mark Haldane who designed the characters, backgrounds, and user interface used within the 3D computer animation. Particular thanks to the participants of the consultative user group for their enthusiasm, comments, and suggestions at all stages of the intervention design.
Resumo:
The emerging technologies have expanded a new dimension of self – ‘technoself’ driven by socio-technical innovations and taken an important step forward in pervasive learning. Technology Enhanced Learning (TEL) research has increasingly focused on emergent technologies such as Augmented Reality (AR) for augmented learning, mobile learning, and game-based learning in order to improve self-motivation and self-engagement of the learners in enriched multimodal learning environments. These researches take advantage of technological innovations in hardware and software across different platforms and devices including tablets, phoneblets and even game consoles and their increasing popularity for pervasive learning with the significant development of personalization processes which place the student at the center of the learning process. In particular, augmented reality (AR) research has matured to a level to facilitate augmented learning, which is defined as an on-demand learning technique where the learning environment adapts to the needs and inputs from learners. In this paper we firstly study the role of Technology Acceptance Model (TAM) which is one of the most influential theories applied in TEL on how learners come to accept and use a new technology. Then we present the design methodology of the technoself approach for pervasive learning and introduce technoself enhanced learning as a novel pedagogical model to improve student engagement by shaping personal learning focus and setting. Furthermore we describe the design and development of an AR-based interactive digital interpretation system for augmented learning and discuss key features. By incorporating mobiles, game simulation, voice recognition, and multimodal interaction through Augmented Reality, the learning contents can be geared toward learner's needs and learners can stimulate discovery and gain greater understanding. The system demonstrates that Augmented Reality can provide rich contextual learning environment and contents tailored for individuals. Augment learning via AR can bridge this gap between the theoretical learning and practical learning, and focus on how the real and virtual can be combined together to fulfill different learning objectives, requirements, and even environments. Finally, we validate and evaluate the AR-based technoself enhanced learning approach to enhancing the student motivation and engagement in the learning process through experimental learning practices. It shows that Augmented Reality is well aligned with constructive learning strategies, as learners can control their own learning and manipulate objects that are not real in augmented environment to derive and acquire understanding and knowledge in a broad diversity of learning practices including constructive activities and analytical activities.
Resumo:
Purpose – This paper aims to contribute towards understanding how safety knowledge can be elicited from railway experts for the purposes of supporting effective decision-making. Design/methodology/approach – A consortium of safety experts from across the British railway industry is formed. Collaborative modelling of the knowledge domain is used as an approach to the elicitation of safety knowledge from experts. From this, a series of knowledge models is derived to inform decision-making. This is achieved by using Bayesian networks as a knowledge modelling scheme, underpinning a Safety Prognosis tool to serve meaningful prognostics information and visualise such information to predict safety violations. Findings – Collaborative modelling of safety-critical knowledge is a valid approach to knowledge elicitation and its sharing across the railway industry. This approach overcomes some of the key limitations of existing approaches to knowledge elicitation. Such models become an effective tool for prediction of safety cases by using railway data. This is demonstrated using passenger–train interaction safety data. Practical implications – This study contributes to practice in two main directions: by documenting an effective approach to knowledge elicitation and knowledge sharing, while also helping the transport industry to understand safety. Social implications – By supporting the railway industry in their efforts to understand safety, this research has the potential to benefit railway passengers, staff and communities in general, which is a priority for the transport sector. Originality/value – This research applies a knowledge elicitation approach to understanding safety based on collaborative modelling, which is a novel approach in the context of transport.
Resumo:
Purpose The aim of the study is to explore the role of confluent learning in supporting the development of change management knowledge, skills and attitudes and to inform the creation of a conceptual model based upon a priori and a posteriori knowledge gained from literature and the research. Design/methodology/approach The research adopts qualitative approach based on reflective inquiry methodology. There are two primary data sources, interviews with learners and the researchers’ reflective journals on learners’ opinions. Findings The confluent learning approach helped to stimulate affective states (e.g. interest and appreciation) to further reinforce cognitive gains (e.g. retention of knowledge) as a number of higher order thinking skills were further developed. The instructional design premised upon confluent learning enabled learners to further appreciate the complexities of change management. Research implications/ limitations The confluent learning approach offers another explanation to how learning takes place, contingent upon the use of a problem solving framework, instructional design and active learning in developing inter- and trans-disciplinary competencies. Practical implications This study not only explains how effective learning takes place but is also instructive to learning and teaching, and human resource development (HRD) professionals in curriculum design and the potential benefits of confluent learning. Social implications The adoption of a confluent learning approach helps to re-naturalise learning that appeals to learners affect. Originality/value This research is one of the few studies that provide an in-depth exploration of the use of confluent learning and how this approach co-develops cognitive abilities and affective capacity in the creation of a conceptual model.
Resumo:
There is considerable interest in the use of genetic algorithms to solve problems arising in the areas of scheduling and timetabling. However, the classical genetic algorithm paradigm is not well equipped to handle the conflict between objectives and constraints that typically occurs in such problems. In order to overcome this, successful implementations frequently make use of problem specific knowledge. This paper is concerned with the development of a GA for a nurse rostering problem at a major UK hospital. The structure of the constraints is used as the basis for a co-evolutionary strategy using co-operating sub-populations. Problem specific knowledge is also used to define a system of incentives and disincentives, and a complementary mutation operator. Empirical results based on 52 weeks of live data show how these features are able to improve an unsuccessful canonical GA to the point where it is able to provide a practical solution to the problem.
Resumo:
This paper is concerned with the hybridization of two graph coloring heuristics (Saturation Degree and Largest Degree), and their application within a hyperheuristic for exam timetabling problems. Hyper-heuristics can be seen as algorithms which intelligently select appropriate algorithms/heuristics for solving a problem. We developed a Tabu Search based hyper-heuristic to search for heuristic lists (of graph heuristics) for solving problems and investigated the heuristic lists found by employing knowledge discovery techniques. Two hybrid approaches (involving Saturation Degree and Largest Degree) including one which employs Case Based Reasoning are presented and discussed. Both the Tabu Search based hyper-heuristic and the hybrid approaches are tested on random and real-world exam timetabling problems. Experimental results are comparable with the best state-of-the-art approaches (as measured against established benchmark problems). The results also demonstrate an increased level of generality in our approach.
Resumo:
There is considerable interest in the use of genetic algorithms to solve problems arising in the areas of scheduling and timetabling. However, the classical genetic algorithm paradigm is not well equipped to handle the conflict between objectives and constraints that typically occurs in such problems. In order to overcome this, successful implementations frequently make use of problem specific knowledge. This paper is concerned with the development of a GA for a nurse rostering problem at a major UK hospital. The structure of the constraints is used as the basis for a co-evolutionary strategy using co-operating sub-populations. Problem specific knowledge is also used to define a system of incentives and disincentives, and a complementary mutation operator. Empirical results based on 52 weeks of live data show how these features are able to improve an unsuccessful canonical GA to the point where it is able to provide a practical solution to the problem.
Resumo:
There is considerable interest in the use of genetic algorithms to solve problems arising in the areas of scheduling and timetabling. However, the classical genetic algorithm paradigm is not well equipped to handle the conflict between objectives and constraints that typically occurs in such problems. In order to overcome this, successful implementations frequently make use of problem specific knowledge. This paper is concerned with the development of a GA for a nurse rostering problem at a major UK hospital. The structure of the constraints is used as the basis for a co-evolutionary strategy using co-operating sub-populations. Problem specific knowledge is also used to define a system of incentives and disincentives, and a complementary mutation operator. Empirical results based on 52 weeks of live data show how these features are able to improve an unsuccessful canonical GA to the point where it is able to provide a practical solution to the problem.
Resumo:
Extreme natural events, like e.g. tsunamis or earthquakes, regularly lead to catastrophes with dramatic consequences. In recent years natural disasters caused hundreds of thousands of deaths, destruction of infrastructure, disruption of economic activity and loss of billions of dollars worth of property and thus revealed considerable deficits hindering their effective management: Needs for stakeholders, decision-makers as well as for persons concerned include systematic risk identification and evaluation, a way to assess countermeasures, awareness raising and decision support systems to be employed before, during and after crisis situations. The overall goal of this study focuses on interdisciplinary integration of various scientific disciplines to contribute to a tsunami early warning information system. In comparison to most studies our focus is on high-end geometric and thematic analysis to meet the requirements of smallscale, heterogeneous and complex coastal urban systems. Data, methods and results from engineering, remote sensing and social sciences are interlinked and provide comprehensive information for disaster risk assessment, management and reduction. In detail, we combine inundation modeling, urban morphology analysis, population assessment, socioeconomic analysis of the population and evacuation modeling. The interdisciplinary results eventually lead to recommendations for mitigation strategies in the fields of spatial planning or coping capacity. © Author(s) 2009.
Resumo:
In contemporary societies higher education must shape individuals able to solve problems in a workable and simpler manner and, therefore, a multidisciplinary view of the problems, with insights in disciplines like psychology, mathematics or computer science becomes mandatory. Undeniably, the great challenge for teachers is to provide a comprehensive training in General Chemistry with high standards of quality, and aiming not only at the promotion of the student’s academic success, but also at the understanding of the competences/skills required to their future doings. Thus, this work will be focused on the development of an intelligent system to assess the Quality-of-General-Chemistry-Learning, based on factors related with subject, teachers and students.
Resumo:
Sequence problems belong to the most challenging interdisciplinary topics of the actuality. They are ubiquitous in science and daily life and occur, for example, in form of DNA sequences encoding all information of an organism, as a text (natural or formal) or in form of a computer program. Therefore, sequence problems occur in many variations in computational biology (drug development), coding theory, data compression, quantitative and computational linguistics (e.g. machine translation). In recent years appeared some proposals to formulate sequence problems like the closest string problem (CSP) and the farthest string problem (FSP) as an Integer Linear Programming Problem (ILPP). In the present talk we present a general novel approach to reduce the size of the ILPP by grouping isomorphous columns of the string matrix together. The approach is of practical use, since the solution of sequence problems is very time consuming, in particular when the sequences are long.
Resumo:
Climate change, intensive use, and population growth are threatening the availability of water resources. New sources of water, better knowledge of existing ones, and improved water management strategies are of paramount importance. Ground water is often considered as primary water source due to its advantages in terms of quantity, spatial distribution, and natural quality. Remote sensing techniques afford scientists a unique opportunity to characterize landscapes in order to assess groundwater resources, particularly in tectonically influenced areas. Aquifers in volcanic basins are considered the most productive aquifers in Latin America. Although topography is considered the primary driving force for groundwater flows in mountainous terrains, tectonic activity increases the complexity of these groundwater systems by altering the integrity of sedimentary rock units and the overlying drainage networks. Structural controls affect the primary hydraulic properties of the rock formations by developing barriers to flow in some cases and zones of preferential infiltration and subterranean in others. The study area focuses on the Quito Aquifer System (QAS) in Ecuador. The characterization of the hydrogeology started with a lineament analysis based on a combined remote sensing and digital terrain analysis approach. The application of classical tools for regional hydrogeological evaluation and shallow geophysical methods were useful to evaluate the impact of faulting and fracturing on the aquifer system. Given the spatial extension of the area and the complexity of the system, two levels of analysis were applied in this study. At the regional level, a lineament map was created for the QAS. Relationships between fractures, faults and lineaments and the configuration of the groundwater flow on the QAS were determined. At the local level, on the Plateaus region of the QAS, a detailed lineament map was obtained by using high-spatial-resolution satellite imagery and aspect map derived from a digital elevation model (DEM). This map was complemented by the analysis of morphotectonic indicators and shallow geophysics that characterize fracture patterns. The development of the groundwater flow system was studied, drawing upon data pertaining to the aquifer system physical characteristics and topography. Hydrochemistry was used to ascertain the groundwater evolution and verify the correspondence of the flow patterns proposed in the flow system analysis. Isotopic analysis was employed to verify the origin of groundwater. The results of this study show that tectonism plays a very important role for the hydrology of the QAS. The results also demonstrate that faults influence a great deal of the topographic characteristics of the QAS and subsequently the configuration of the groundwater flow. Moreover, for the Plateaus region, the results demonstrate that the aquifer flow systems are affected by secondary porosity. This is a new conceptualization of the functioning of the aquifers on the QAS that will significantly contribute to the development of better strategies for the management of this important water resource.
Resumo:
Safe drug prescribing and administration are essential elements within undergraduate healthcare curricula, but medication errors, especially in paediatric practice, continue to compromise patient safety. In this area of clinical care, collective responsibility, team working and communication between health professionals have been identified as key elements in safe clinical practice. To date, there is limited research evidence as to how best to deliver teaching and learning of these competencies to practitioners of the future.An interprofessional workshop to facilitate learning of knowledge, core competencies, communication and team working skills in paediatric drug prescribing and administration at undergraduate level was developed and evaluated. The practical, ward-based workshop was delivered to 4th year medical and 3rd year nursing students and evaluated using a pre and post workshop questionnaire with open-ended response questions.Following the workshop, students reported an increase in their knowledge and awareness of paediatric medication safety and the causes of medication errors (p < 0.001), with the greatest increase noted among medical students. Highly significant changes in students' attitudes to shared learning were observed, indicating that safe medication practice is learnt more effectively with students from other healthcare disciplines. Qualitative data revealed that students' participation in the workshop improved communication and teamworking skills, and led to greater awareness of the role of other healthcare professionals.This study has helped bridge the knowledge-skills gap, demonstrating how an interprofessional approach to drug prescribing and administration has the potential to improve quality and safety within healthcare.
Resumo:
Intersubjectivity is an important concept in psychology and sociology. It refers to sharing conceptualizations through social interactions in a community and using such shared conceptualization as a resource to interpret things that happen in everyday life. In this work, we make use of intersubjectivity as the basis to model shared stance and subjectivity for sentiment analysis. We construct an intersubjectivity network which links review writers, terms they used, as well as the polarities of the terms. Based on this network model, we propose a method to learn writer embeddings which are subsequently incorporated into a convolutional neural network for sentiment analysis. Evaluations on the IMDB, Yelp 2013 and Yelp 2014 datasets show that the proposed approach has achieved the state-of-the-art performance.