900 resultados para Interaction with Traffic


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cover title.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pathogen challenge can trigger an integrated set of signal transduction pathways, which ultimately leads to a state of high alert, otherwise known as systemic or induced resistance in tissue remote to the initial infection. Although large-scale gene expression during systemic acquired resistance, which is induced by salicylic acid or necrotizing pathogens has been previously reported using a bacterial pathogen, the nature of systemic defense responses triggered by an incompatible necrotrophic fungal pathogen is not known. We examined transcriptional changes that occur during systemic defense responses in Arabidopsis plants inoculated with the incompatible fungal pathogen Alternaria brassicicola. Substantial changes (2.00-fold and statistically significant) were demonstrated in distal tissue of inoculated plants for 35 genes (25 up-regulated and 10 down-regulated), and expression of a selected subset of systemically expressed genes was confirmed using real-time quantitative polymerase chain reaction. Genes with altered expression in distal tissue included those with putative functions in cellular housekeeping, indicating that plants modify these vital processes to facilitate a coordinated response to pathogen attack. Transcriptional up-regulation of genes encoding enzymes functioning in the beta-oxidation pathway of fatty acids was particularly interesting. Transcriptional up-regulation was also observed for genes involved in cell wall synthesis and modification and genes putatively involved in signal transduction. The results of this study, therefore, confirm the notion that distal tissue of a pathogen-challenged plant has a heightened preparedness for subsequent pathogen attacks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eph receptor tyrosine kinases (Ephs) function as molecular relays that interact with cell surface-bound ephrin ligands to direct the position of migrating cells. Structural studies revealed that, through two distinct contact surfaces on opposite sites of each protein, Eph and ephrin binding domains assemble into symmetric, circular heterotetramers. However, Eph signal initiation requires the assembly of higher order oligomers, suggesting additional points of contact. By screening a random library of EphA3 binding-compromised ephrin-A5 mutants, we have now determined ephrin-A5 residues that are essential for the assembly of high affinity EphA3 signaling complexes. In addition to the two interfaces predicted from the crystal structure of the homologous EphB2 center dot ephrin-B2 complex, we identified a cluster of 10 residues on the ephrin-A5 E alpha-helix, the E-F loop, the underlying H beta-strand, as well as the nearby B - C loop, which define a distinct third surface required for oligomerization and activation of EphA3 signaling. Together with a corresponding third surface region identified recently outside of the minimal ephrin binding domain of EphA3, our findings provide experimental evidence for the essential contribution of three distinct protein-interaction interfaces to assemble functional EphA3 signaling complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of the benchmark test are presented of comparing numerical schemes solving shock wave of M-s = 2.38 in nitrogen and argon interacting with a 43 degrees semi-apex angle cone and corresponding experiments. The benchmark test was announced in Shock Waves Vol. 12, No. 4, in which we tried to clarify the effects of viscosity and heat conductivity on shock reflection in conical flows. This paper summarizes results of ten numerical and two experimental applications. State of the art in studies regarding the shock/cone interaction is clarified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The APTX gene, mutated in patients with the neurological disorder ataxia with oculomotor apraxia type 1 (AOA1), encodes a novel protein aprataxin. We describe here, the interaction and interdependence between aprataxin and several nucleolar proteins, including nucleolin, nucleophosmin and upstream binding factor-1 (UBF-1), involved in ribosomal RNA (rRNA) synthesis and cellular stress signalling. Interaction between aprataxin and nucleolin occurred through their respective N-terminal regions. In AOA1 cells lacking aprataxin, the stability of nucleolin was significantly reduced. On the other hand, down-regulation of nucleolin by RNA interference did not affect aprataxin protein levels but abolished its nucleolar localization suggesting that the interaction with nucleolin is involved in its nucleolar targeting. GFP-aprataxin fusion protein co-localized with nucleolin, nucleophosmin and UBF-1 in nucleoli and inhibition of ribosomal DNA transcription altered the distribution of aprataxin in the nucleolus, suggesting that the nature of the nucleolar localization of aprataxin is also dependent on ongoing rRNA synthesis. In vivo rRNA synthesis analysis showed only a minor decrease in AOA1 cells when compared with controls cells. These results demonstrate a cross-dependence between aprataxin and nucleolin in the nucleolus and while aprataxin does not appear to be directly involved in rRNA synthesis its nucleolar localization is dependent on this synthesis.