999 resultados para Inteligência cibernética
Resumo:
OBJETIVO: Identificar, com o auxílio de técnicas computacionais, regras referentes às condições do ambiente físico para a classificação de microáreas de risco. MÉTODOS: Pesquisa exploratória, desenvolvida na cidade de Curitiba, PR, em 2007, dividida em três etapas: identificação de atributos para classificar uma microárea; construção de uma base de dados; e aplicação do processo de descoberta de conhecimento em base de dados, por meio da aplicação de mineração de dados. O conjunto de atributos envolveu as condições de infra- estrutura, hidrografia, solo, área de lazer, características da comunidade e existência de vetores. A base de dados foi construída com dados obtidos em entrevistas com agentes comunitários de saúde, sendo utilizado um questionário com questões fechadas, elaborado com os atributos essenciais, selecionados por especialistas. RESULTADOS: Foram identificados 49 atributos, sendo 41 essenciais e oito irrelevantes. Foram obtidas 68 regras com a mineração de dados, as quais foram analisadas sob a perspectiva de desempenho e qualidade e divididas em dois conjuntos: as inconsistentes e as que confirmam o conhecimento de especialistas. A comparação entre os conjuntos mostrou que as regras que confirmavam o conhecimento, apesar de terem desempenho computacional inferior, foram consideradas mais interessantes. CONCLUSÕES: A mineração de dados ofereceu um conjunto de regras úteis e compreensíveis, capazes de caracterizar microáreas, classificando-as quanto ao grau do risco, com base em características do ambiente físico. A utilização das regras propostas permite que a classificação de uma microárea possa ser realizada de forma mais rápida, menos subjetiva, mantendo um padrão entre as equipes de saúde, superando a influência da percepção particular de cada componente da equipe.
Resumo:
O panorama atual da emergência e socorro de primeira linha em Portugal, carateriza-se por uma grande aposta ao longo dos últimos anos num incremento contínuo da qualidade e da eficiência que estes serviços prestam às populações locais. Com vista à prossecução do objetivo de melhoria contínua dos serviços, foram realizados ao longo dos últimos anos investimentos avultados ao nível dos recursos técnicos e ao nível da contratação e formação de recursos humanos altamente qualificados. Atualmente as instituições que prestam socorro e emergência de primeira linha estão bem dotadas ao nível físico e ao nível humano dos recursos necessários para fazerem face aos mais diversos tipos de ocorrências. Contudo, ao nível dos sistemas de informação de apoio à emergência e socorro de primeira linha, verifica-se uma inadequação (e por vezes inexistência) de sistemas informáticos capazes de suportar convenientemente o atual contexto de exigência e complexidade da emergência e socorro. Foi feita ao longo dos últimos anos, uma forte aposta na melhoria dos recursos físicos e dos recursos humanos encarregues da resposta àsemergência de primeira linha, mas descurou-se a área da gestão e análise da informação sobre as ocorrências, assim como, o delinear de possíveis estratégias de prevenção que uma análise sistematizada da informação sobre as ocorrências possibilita. Nas instituições de emergência e socorro de primeira linha em Portugal (bombeiros, proteção civil municipal, PSP, GNR, polícia municipal), prevalecem ainda hoje os sistemas informáticos apenas para o registo das ocorrências à posteriori e a total inexistência de sistemas de registo de informação e de apoio à decisão na alocação de recursos que operem em tempo real. A generalidade dos sistemas informáticos atualmente existentes nas instituições são unicamente de sistemas de backoffice, que não aproveitam a todas as potencialidades da informação operacional neles armazenada. Verificou-se também, que a geo-localização por via informática dos recursos físicos e de pontos de interesse relevantes em situações críticas é inexistente a este nível. Neste contexto, consideramos ser possível e importante alinhar o nível dos sistemas informáticos das instituições encarregues da emergência e socorro de primeira linha, com o nível dos recursos físicos e humanos que já dispõem atualmente. Dado que a emergência e socorro de primeira linha é um domínio claramente elegível para a aplicação de tecnologias provenientes dos domínios da inteligência artificial (nomeadamente sistemas periciais para apoio à decisão) e da geo-localização, decidimos no âmbito desta tese desenvolver um sistema informático capaz de colmatar muitas das lacunas por nós identificadas ao nível dos sistemas informáticos destas instituições. Pretendemos colocar as suas plataformas informáticas num nível similar ao dos seus recursos físicos e humanos. Assim, foram por nós identificadas duas áreas chave onde a implementação de sistemas informáticos adequados às reais necessidades das instituições podem ter um impacto muito proporcionar uma melhor gestão e otimização dos recursos físicos e humanos. As duas áreas chave por nós identificadas são o suporte à decisão na alocação dos recursos físicos e a geolocalização dos recursos físicos, das ocorrências e dos pontos de interesse. Procurando fornecer uma resposta válida e adequada a estas duas necessidades prementes, foi desenvolvido no âmbito desta tese o sistema CRITICAL DECISIONS. O sistema CRITICAL DECISIONS incorpora um conjunto de funcionalidades típicas de um sistema pericial, para o apoio na decisão de alocação de recursos físicos às ocorrências. A inferência automática dos recursos físicos, assenta num conjunto de regra de inferência armazenadas numa base de conhecimento, em constante crescimento e atualização, com base nas respostas bem sucedidas a ocorrências passadas. Para suprimir as carências aos nível da geo-localização dos recursos físicos, das ocorrências e dos pontos de interesse, o sistema CRITICAL DECISIONS incorpora também um conjunto de funcionalidades de geo-localização. Estas permitem a geo-localização de todos os recursos físicos da instituição, a geo-localização dos locais e as áreas das várias ocorrências, assim como, dos vários tipos de pontos de interesse. O sistema CRITICAL DECISIONS visa ainda suprimir um conjunto de outras carências por nós identificadas, ao nível da gestão documental (planos de emergência, plantas dos edifícios) , da comunicação, da partilha de informação entre as instituições de socorro e emergência locais, da contabilização dos tempos de serviço, entre outros. O sistema CRITICAL DECISIONS é o culminar de um esforço colaborativo e contínuo com várias instituições, responsáveis pela emergência e socorro de primeira linha a nível local. Esperamos com o sistema CRITICAL DECISIONS, dotar estas instituições de uma plataforma informática atual, inovadora, evolutiva, com baixos custos de implementação e de operação, capaz de proporcionar melhorias contínuas e significativas ao nível da qualidade da resposta às ocorrências, das capacidades de prevenção e de uma melhor otimização de todos os tipos de recursos que têm ao dispor.
Resumo:
In almost all industrialized countries, the energy sector has suffered a severe restructuring that originated a greater complexity in market players’ interactions. The complexity that these changes brought made way for the creation of decision support tools that facilitate the study and understanding of these markets. MASCEM – “Multiagent Simulator for Competitive Electricity Markets” arose in this context providing a framework for evaluating new rules, new behaviour, and new participants in deregulated electricity markets. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. ALBidS is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This tool’s goal is to force the thinker to move outside his habitual thinking style. It was developed to be used mainly at meetings in order to “run better meetings, make faster decisions”. This dissertation presents a study about the applicability of the Six Thinking Hats technique in Decision Support Systems, particularly with the multiagent paradigm like the MASCEM simulator. As such this work’s proposal is of a new agent, a meta-learner based on STH technique that organizes several different ALBidS’ strategies and combines the distinct answers into a single one that, expectedly, out-performs any of them.
Resumo:
Este trabalho, realizado no âmbito da unidade curricular de Tese/Dissertação, procura mostrar de que forma a Computação Evolucionária se pode aplicar no mundo da Música. Este é, de resto, um tema sobejamente aliciante dentro da área da Inteligência Artificial. Começa-se por apresentar o mundo da Música com uma perspetiva cronológica da sua história, dando especial relevo ao estilo musical do Fado de Coimbra. Abordam-se também os conceitos fundamentais da teoria musical. Relativamente à Computação Evolucionária, expõem-se os elementos associados aos Algoritmos Evolucionários e apresentam-se os principais modelos, nomeadamente os Algoritmos Genéticos. Ainda no âmbito da Computação Evolucionária, foi elaborado um pequeno estudo do “estado da arte” da aplicação da Computação Evolucionária na Música. A implementação prática deste trabalho baseia-se numa aplicação – AG Fado – que compõe melodias de Fado de Coimbra, utilizando Algoritmos Genéticos. O trabalho foi dividido em duas partes principais: a primeira parte consiste na recolha de informações e posterior levantamento de dados estatísticos sobre o género musical escolhido, nomeadamente fados em tonalidade maior e fados em tonalidade menor; a segunda parte consiste no desenvolvimento da aplicação, com a conceção do respetivo algoritmo genético para composição de melodias. As melodias obtidas através da aplicação desenvolvida são bastante audíveis e boas melodicamente. No entanto, destaca-se o facto de a avaliação ser efetuada por seres humanos o que implica sensibilidades musicais distintas levando a resultados igualmente distintos.
Resumo:
OBJETIVO: Analisar fatores associados a transtorno de déficit de atenção e hiperatividade em crianças. MÉTODOS: Estudo longitudinal sobre problemas de comportamento em crianças escolares de São Gonçalo, RJ, em 2005. Foram analisados 479 escolares da rede pública selecionados por amostragem por conglomerados em três estágios. Foi utilizada a escala Child Behavior Checklist para medição do desfecho. Foi aplicado um questionário para pais/responsáveis acerca dos fatores de exposição analisados: perfil da criança e da família, variáveis de relacionamento familiar, violências físicas e psicológicas. O modelo regressão log-binomial com enfoque hierarquizado foi empregado para a análise. RESULTADOS: Quociente de inteligência mais alto associou-se inversamente à frequência do transtorno (RP = 0,980 [IC95% 0,963;0,998]). A prevalência de transtorno nas crianças foi maior quando havia disfunção familiar do que entre famílias com melhor forma de se relacionar (RP = 2,538 [IC95% 1,572;4,099]). Crianças que sofriam agressão verbal pela mãe apresentaram prevalência 3,7 vezes maior do que aquelas não expostas a essa situação no último ano (RP = 4,7 [IC95% 1,254;17,636]). CONCLUSÕES: Relações familiares negativas estão associadas aos sintomas de transtorno de déficit de atenção e hiperatividade. Sua associação com quociente de inteligência reitera a importância da base genética e ambiental na origem do transtorno.
Resumo:
Mestrado em Intervenção Sócio-Organizacional na Saúde - Ramo de especialização: Políticas de Administração e gestão de Serviços de Saúde
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Redes de Comunicação e Multimédia
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Redes de Comunicação e Multimédia
Resumo:
Relatório Final de Estágio apresentado à Escola Superior de Dança com vista à obtenção do Grau de Mestre em Ensino de Dança.
Resumo:
O tema da inteligência emocional tem vindo a ganhar protagonismo no plano pessoal, organizacional e societário. A emocionalidade e a racionalidade devem ser ambas consideradas e valorizadas de forma equilibrada. Este estudo teve como amostra 507 enfermeiros a trabalhar em organizações do ramo da saúde. Estes profissionais têm uma tarefa complexa, uma vez que lidam diariamente com pessoas, que devido à sua situação de saúde fragilizada, estão mais vulneráveis e com o seu estado emocional mais alterado, o que remete para a necessidade de avaliar o desenvolvimento emocional dos mesmos. Definimos como objetivo geral contribuir para um maior conhecimento empírico sobre o desenvolvimento emocional em adultos. Os objetivos específicos são: a tradução e validação do questionário de desenvolvimento emocional em adultos (QDE_A) de Pérez-Escoda, Bisquerra, Filella e Soldevila (2010), adaptado à situação portuguesa, em enfermeiros; e a avaliação do desenvolvimento emocional dos mesmos. No que respeita à metodologia, o estudo é de carácter quantitativo, descritivo, exploratório e inferencial. Numa amostra de 507 enfermeiros, de duas regiões com caraterísticas socioeconómicas distintas, foi aplicado o QDE_A.A validação do mesmo foi concretizada através de uma análise fatorial exploratória e de uma análise fatorial confirmatória (CFA). Como objetivado foi conseguida a validação do QDE_A, tendo sido obtido um modelo constituído por cinco dimensões do desenvolvimento emocional, muito aproximado ao modelo proposto por Goleman (1995), sendo, assim, possível a sua utilização em investigações futuras e em intervenções na área da gestão dos recursos humanos e coaching. Relativamente ao objetivo de estudo, sobre o desenvolvimento emocional dos enfermeiros, verificámos que estes possuem níveis médios a elevados de desenvolvimento emocional global e que, dentro das dimensões, a auto motivação e a gestão das emoções são as mais evidenciadas, tendo em vista o incremento do desenvolvimento da inteligência emocional destes profissionais.
Resumo:
O objectivo deste estudo é comparar programas de intervenção de escritas inventadas de natureza construtivista ou transmissiva. Participaram nesta investigação 78 crianças de idade pré-escolar, cujas escritas não representavam ainda os sons, tendo sido distribuídas por cinco grupos, quatro experimentais e um de controlo, equivalentes quanto à idade, inteligência, número de letras conhecidas e consciência fonológica. Entre o pré e o pós teste, as crianças dos grupos experimentais participaram num programa de intervenção de escritas inventadas de natureza construtivista ou transmissiva, manipulando-se ainda variáveis relacionadas com as características das palavras de treino e o tipo de instruções. Só se verifi cou uma evolução signifi cativa da qualidade das escritas inventadas nas crianças que participaram nos programas de intervenção de natureza construtivista.
Resumo:
A quantidade e variedade de conteúdos multimédia actualmente disponíveis cons- tituem um desafio para os utilizadores dado que o espaço de procura e escolha de fontes e conteúdos excede o tempo e a capacidade de processamento dos utilizado- res. Este problema da selecção, em função do perfil do utilizador, de informação em grandes conjuntos heterogéneos de dados é complexo e requer ferramentas específicas. Os Sistemas de Recomendação surgem neste contexto e são capazes de sugerir ao utilizador itens que se coadunam com os seus gostos, interesses ou necessidades, i.e., o seu perfil, recorrendo a metodologias de inteligência artificial. O principal objectivo desta tese é demonstrar que é possível recomendar em tempo útil conteúdos multimédia a partir do perfil pessoal e social do utilizador, recorrendo exclusivamente a fontes públicas e heterogéneas de dados. Neste sen- tido, concebeu-se e desenvolveu-se um Sistema de Recomendação de conteúdos multimédia baseado no conteúdo, i.e., nas características dos itens, no historial e preferências pessoais e nas interacções sociais do utilizador. Os conteúdos mul- timédia recomendados, i.e., os itens sugeridos ao utilizador, são provenientes da estação televisiva britânica, British Broadcasting Corporation (BBC), e estão classificados de acordo com as categorias dos programas da BBC. O perfil do utilizador é construído levando em conta o historial, o contexto, as preferências pessoais e as actividades sociais. O YouTube é a fonte do histo- rial pessoal utilizada, permitindo simular a principal fonte deste tipo de dados - a Set-Top Box (STB). O historial do utilizador é constituído pelo conjunto de vídeos YouTube e programas da BBC vistos pelo utilizador. O conteúdo dos vídeos do YouTube está classificado segundo as categorias de vídeo do próprio YouTube, sendo efectuado o mapeamento para as categorias dos programas da BBC. A informação social, que é proveniente das redes sociais Facebook e Twit- ter, é recolhida através da plataforma Beancounter. As actividades sociais do utilizador obtidas são filtradas para extrair os filmes e séries que são, por sua vez, enriquecidos semanticamente através do recurso a repositórios abertos de dados interligados. Neste caso, os filmes e séries são classificados através dos géneros da IMDb e, posteriormente, mapeados para as categorias de programas da BBC. Por último, a informação do contexto e das preferências explícitas, através da classificação dos itens recomendados, do utilizador são também contempladas. O sistema desenvolvido efectua recomendações em tempo real baseado nas actividades das redes sociais Facebook e Twitter, no historial de vídeos Youtube e de programas da BBC vistos e preferências explícitas. Foram realizados testes com cinco utilizadores e o tempo médio de resposta do sistema para criar o conjunto inicial de recomendações foi 30 s. As recomendações personalizadas são geradas e actualizadas mediante pedido expresso do utilizador.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Os avanços nas Interfaces Cérebro-máquina, resultantes dos avanços no tratamento de sinal e da inteligência artificial, estão a permitir-nos aceder à atividade cerebral, descodificá-la, e usála para comandar dispositivos, sejam eles braços artificiais ou computadores. Isto é muito mais importante quando os utilizadores são pessoas que perderam a capacidade de comunicar, embora mantenham as suas capacidades cognitivas intactas. O caso mais extremo desta situação é o das pessoas afetadas pela Síndrome de Encarceramento. Este trabalho pretende contribuir para a melhoria da qualidade de vida das pessoas afetadas por esta síndrome, disponibilizando-lhes um meio de comunicação adaptado às suas limitações. É essencialmente um estudo de usabilidade aplicada a um tipo de utilizador extremamente diminuído na sua capacidade de interação. Nesta investigação começamos por compreender a Síndrome de Encarceramento e as limitações e capacidades das pessoas afetadas por ela. Abordamos a neuroplasticidade, o que é, e em que medida é importante para a utilização das Interfaces Cérebro-máquina. Analisamos o funcionamento destas interfaces, e os fundamentos científicos que o suportam. Finalmente, com todo este conhecimento em mãos, investigamos e desenvolvemos métodos que nos permitissem otimizar as limitadas capacidades do utilizador na sua interação com o sistema, minimizando o esforço e maximizando o desempenho. Foi para o efeito desenhado e implementado um protótipo que nos permitisse validar as soluções encontradas.
Resumo:
Esta dissertação incide sobre o estudo e análise de uma solução para a criação de um sistema de recomendação para uma comunidade de consumidores de media e no consequente desenvolvimento da mesma cujo âmbito inicial engloba consumidores de jogos, filmes e/ou séries, com o intuito de lhes proporcionar a oportunidade de partilharem experiências, bem como manterem um registo das mesmas. Com a informação adquirida, o sistema reúne condições para proceder a sugestões direcionadas a cada membro da comunidade. O sistema atualiza a sua informação mediante as ações e os dados fornecidos pelos membros, bem como pelo seu feedback às sugestões. Esta aprendizagem ao longo do tempo permite que as sugestões do sistema evoluam juntamente com a mudança de preferência dos membros ou se autocorrijam. O sistema toma iniciativa de sugerir mediante determinadas ações, mas também pode ser invocada uma sugestão diretamente pelo utilizador, na medida em que este não precisa de esperar por sugestões, podendo pedir ao sistema que as forneça num determinado momento. Nos testes realizados foi possível apurar que o sistema de recomendação desenvolvido forneceu sugestões adequadas a cada utilizador específico, tomando em linha de conta as suas ações prévias. Para além deste facto, o sistema não forneceu qualquer sugestão quando o histórico destas tinha provado incomodar o utilizador.