976 resultados para Inside-Outside Algorithm
Resumo:
As all-atom molecular dynamics method is limited by its enormous computational cost, various coarse-grained strategies have been developed to extend the length scale of soft matters in the modeling of mechanical behaviors. However, the classical thermostat algorithm in highly coarse-grained molecular dynamics method would underestimate the thermodynamic behaviors of soft matters (e.g. microfilaments in cells), which can weaken the ability of materials to overcome local energy traps in granular modeling. Based on all-atom molecular dynamics modeling of microfilament fragments (G-actin clusters), a new stochastic thermostat algorithm is developed to retain the representation of thermodynamic properties of microfilaments at extra coarse-grained level. The accuracy of this stochastic thermostat algorithm is validated by all-atom MD simulation. This new stochastic thermostat algorithm provides an efficient way to investigate the thermomechanical properties of large-scale soft matters.
Resumo:
This article proposes that a paradigm shift that has implications for practitioners of parenting interventions is emerging. This shift represents a challenge to the dominant model of parent training. The Triple P Parenting Program is discussed as an example of parent training programme to highlight the relevant issues for practitioners, including common practitioner objections encountered in dissemination as identified, in part, by Mazzucchelli and Sanders. It is argued that apart fromthese objections, there are more essential concerns in relation to the adoption of parent training programmes by practitioners. Rather, the article argues that parent training is “mind-blind” and that approaches emerging from the field of interpersonal neurobiology represent developmentally sophisticated alternatives for intervention. The Circle of Security programme is discussed as one example of this emerging paradigm shift that integrates attachment, social neuroscience, and psychodynamic theory. Contrasts are highlighted between the models, and considerations for future issues in parent intervention conclude the article.
Resumo:
To enhance the performance of the k-nearest neighbors approach in forecasting short-term traffic volume, this paper proposed and tested a two-step approach with the ability of forecasting multiple steps. In selecting k-nearest neighbors, a time constraint window is introduced, and then local minima of the distances between the state vectors are ranked to avoid overlappings among candidates. Moreover, to control extreme values’ undesirable impact, a novel algorithm with attractive analytical features is developed based on the principle component. The enhanced KNN method has been evaluated using the field data, and our comparison analysis shows that it outperformed the competing algorithms in most cases.
Resumo:
Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation technology. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches consider the energy consumption by physical machines only, but do not consider the energy consumption in communication network, in a data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement. In our preliminary research, we have proposed a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both physical machines and the communication network in a data center. Aiming at improving the performance and efficiency of the genetic algorithm, this paper presents a hybrid genetic algorithm for the energy-efficient virtual machine placement problem. Experimental results show that the hybrid genetic algorithm significantly outperforms the original genetic algorithm, and that the hybrid genetic algorithm is scalable.
Resumo:
This chapter is concerned with innovation that involves creative cultural occupations, but not within the creative industries. Rather, we examine the operation of cultural creative occupations that exist outside the creative industries - so-called 'embedded creatives' who work across all industry sectors (Cunningham and Higgs 2009). In doing so, we concur with Bilton (2007) that the separation of creative industries from other industries is a 'false step'. All industries must be innovative; however, they also must be able to combine both scientific and artistic creativity, and that creativity comes from the intersection of different thinking styles (Kurtzberg 2005). Moreover, we suggest that there are now detailed empirical studies, as well as a nascent theoretical base, to suggest that the transdisciplinarity which results from embedded cultural creativity is an engine of growth in the broader economy. Thus, it is relevant to both policymakers and managers. This chapter addresses the following questions: What is the role and significance of the embedded creative? Given a paucity of detailed empirical work in the area to date, what can be deduced from what extant literature there is about the nature of employment and management of these workers? And what are the practical implications of these consideration?
Resumo:
Despite continued growth over recent decades, travel journalism has so far gained little attention in journalism research, with scholars often ridiculing it and other forms of lifestyle journalism as not being real journalism. This paper aims to the shift the focus by arguing that non-news journalism is increasingly important as a site for research. It reports the results from a content analysis of Australian newspaper travel sections and examines the role they play in mediating foreign places. The results demonstrate that travel stories can be mostly classed as service stories in that they focus on destinations which are already popular with Australians. At the same time they report very little about local cultures at the destinations, demonstrating a focus on the tourist experience and a missed opportunity for improving inter-cultural understanding. A visual analysis of photographs shows stereotypical portrayals of destinations broadly in line with tourism promotion materials.
Resumo:
The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the K-means algorithm depends highly on initial cluster centers and converges to local minima. This paper proposes a hybrid evolutionary programming based clustering algorithm, called PSO-SA, by combining particle swarm optimization (PSO) and simulated annealing (SA). The basic idea is to search around the global solution by SA and to increase the information exchange among particles using a mutation operator to escape local optima. Three datasets, Iris, Wisconsin Breast Cancer, and Ripley’s Glass, have been considered to show the effectiveness of the proposed clustering algorithm in providing optimal clusters. The simulation results show that the PSO-SA clustering algorithm not only has a better response but also converges more quickly than the K-means, PSO, and SA algorithms.
Resumo:
This paper presents a new hybrid evolutionary algorithm based on Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) for daily Volt/Var control in distribution system including Distributed Generators (DGs). Due to the small X/R ratio and radial configuration of distribution systems, DGs have much impact on this problem. Since DGs are independent power producers or private ownership, a price based methodology is proposed as a proper signal to encourage owners of DGs in active power generation. Generally, the daily Volt/Var control is a nonlinear optimization problem. Therefore, an efficient hybrid evolutionary method based on Particle Swarm Optimization and Ant Colony Optimization (ACO), called HPSO, is proposed to determine the active power values of DGs, reactive power values of capacitors and tap positions of transformers for the next day. The feasibility of the proposed algorithm is demonstrated and compared with methods based on the original PSO, ACO and GA algorithms on IEEE 34-bus distribution feeder.
Resumo:
This paper presents a new algorithm based on honey-bee mating optimization (HBMO) to estimate harmonic state variables in distribution networks including distributed generators (DGs). The proposed algorithm performs estimation for both amplitude and phase of each harmonics by minimizing the error between the measured values from phasor measurement units (PMUs) and the values computed from the estimated parameters during the estimation process. Simulation results on two distribution test system are presented to demonstrate that the speed and accuracy of proposed distribution harmonic state estimation (DHSE) algorithm is extremely effective and efficient in comparison with the conventional algorithms such as weight least square (WLS), genetic algorithm (GA) and tabu search (TS).
Resumo:
This paper presents an efficient hybrid evolutionary optimization algorithm based on combining Ant Colony Optimization (ACO) and Simulated Annealing (SA), called ACO-SA, for distribution feeder reconfiguration (DFR) considering Distributed Generators (DGs). Due to private ownership of DGs, a cost based compensation method is used to encourage DGs in active and reactive power generation. The objective function is summation of electrical energy generated by DGs and substation bus (main bus) in the next day. The approach is tested on a real distribution feeder. The simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for solving DFR problem.
Resumo:
This paper presents an efficient algorithm for multi-objective distribution feeder reconfiguration based on Modified Honey Bee Mating Optimization (MHBMO) approach. The main objective of the Distribution feeder reconfiguration (DFR) is to minimize the real power loss, deviation of the nodes’ voltage. Because of the fact that the objectives are different and no commensurable, it is difficult to solve the problem by conventional approaches that may optimize a single objective. So the metahuristic algorithm has been applied to this problem. This paper describes the full algorithm to Objective functions paid, The results of simulations on a 32 bus distribution system is given and shown high accuracy and optimize the proposed algorithm in power loss minimization.
Resumo:
This paper deals with an efficient hybrid evolutionary optimization algorithm in accordance with combining the ant colony optimization (ACO) and the simulated annealing (SA), so called ACO-SA. The distribution feeder reconfiguration (DFR) is known as one of the most important control schemes in the distribution networks, which can be affected by distributed generations (DGs) for the multi-objective DFR. In such a case, DGs is used to minimize the real power loss, the deviation of nodes voltage and the number of switching operations. The approach is carried out on a real distribution feeder, where the simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for solving the DFR problem.
Resumo:
Violence in entertainment districts is a major problem across urban landscapes throughout the world. Research shows that licensed premises are the third most common location for homicides and serious assaults, accounting for one in ten fatal and nonfatal assaults. One class of interventions that aims to reduce violence in entertainment districts involves the use of civil remedies: a group of strategies that use civil or regulatory measures as legal “levers” to reduce problem behavior. One specific civil remedy used to reduce problematic behavior in entertainment districts involves manipulation of licensed premise trading hours. This article uses generalized linear models to analyze the impact of lockout legislation on recorded violent offences in two entertainment districts in the Australian state of Queensland. Our research shows that 3 a.m. lockout legislation led to a direct and significant reduction in the number of violent incidents inside licensed premises. Indeed, the lockouts cut the level of violent crime inside licensed premises by half. Despite these impressive results for the control of violence inside licensed premises, we found no evidence that the lockout had any impact on violence on streets and footpaths outside licensed premises that were the site for more than 80 percent of entertainment district violence. Overall, however, our analysis suggests that lockouts are an important mechanism that helps to control the level of violence inside licensed premises but that finely grained contextual responses to alcohol-related problems are needed rather than one-size-fits-all solutions.
Resumo:
This paper presents a new algorithm based on a Hybrid Particle Swarm Optimization (PSO) and Simulated Annealing (SA) called PSO-SA to estimate harmonic state variables in distribution networks. The proposed algorithm performs estimation for both amplitude and phase of each harmonic currents injection by minimizing the error between the measured values from Phasor Measurement Units (PMUs) and the values computed from the estimated parameters during the estimation process. The proposed algorithm can take into account the uncertainty of the harmonic pseudo measurement and the tolerance in the line impedances of the network as well as uncertainty of the Distributed Generators (DGs) such as Wind Turbines (WT). The main feature of proposed PSO-SA algorithm is to reach quickly around the global optimum by PSO with enabling a mutation function and then to find that optimum by SA searching algorithm. Simulation results on IEEE 34 bus radial and a realistic 70-bus radial test networks are presented to demonstrate the speed and accuracy of proposed Distribution Harmonic State Estimation (DHSE) algorithm is extremely effective and efficient in comparison with the conventional algorithms such as Weight Least Square (WLS), Genetic Algorithm (GA), original PSO and Honey Bees Mating Optimization (HBMO) algorithm.