984 resultados para Input Power
A broadband uniplanar quasi-yagi antenna: Parameter study in application to a spatial power combiner
Resumo:
We investigate the size and power properties of the AH test of evolutionary change. This involves examining whether the size results are sensitive to both the number of individual frequencies estimated and the spectral shape adopted under the null hypothesis. The power tests examine whether the test has good power to detect shifts in both spectral position (variance) and spectral shape (autocovariance structure).
Resumo:
This paper details an investigation of a power combiner that uses a reflect array of dual-feed aperture-coupled microstrip patch antennas and a corporate-fed dual-polarized array as a signal distributing/combining device. In this configuration, elements of the reflect array receive a linearly polarized wave and retransmit it with an orthogonal polarization using variable-length sections of microstrip lines connecting receive and transmit ports. By applying appropriate lengths of these delay lines, the array focuses the transmitted wave onto the feed array. The operation of the combiner is investigated for a small-size circular reflect array for the cases of -3 dB, -6 dB and -10 dB edge illumination by the 2 x 2-element dual-polarized array.
Resumo:
We show how polarization measurements on the output fields generated by parametric down conversion will reveal a violation of multiparticle Bell inequalities, in the regime of both low- and high-output intensity. In this case, each spatially separated system, upon which a measurement is performed, is comprised of more than one particle. In view of the formal analogy with spin systems, the proposal provides an opportunity to test the predictions of quantum mechanics for spatially separated higher spin states. Here the quantum behavior possible even where measurements are performed on systems of large quantum (particle) number may be demonstrated. Our proposal applies to both vacuum-state signal and idler inputs, and also to the quantum-injected parametric amplifier as studied by De Martini The effect of detector inefficiencies is included, and weaker Bell-Clauser-Horne inequalities are derived to enable realistic tests of local hidden variables with auxiliary assumptions for the multiparticle situation.
Resumo:
The ability to generate peak power is central for performance in many sports. Currently two distinct resistance training methods are used to develop peak power, the heavy weight/slow velocity and light weight/fast velocity regimes. When using the light weight/fast velocity power training method it was proposed that peak power would be greater in a shoulder throw exercise compared with a normal shoulder press. Nine males performed three lifts in the shoulder press and shoulder throw at 30% and 40% of their one repetition maximum (1RM). These lifts were performed identically, except for the release of the bar in the throw condition. A potentiometer attached to the bar measured displacement and duration of the lifts. The time of bar release in the shoulder throw was determined with a pressure switch. ANOVA was used to examine statistically significant differences where the level of acceptance was set at p
Resumo:
Purpose: The aims of this study are two-fold: first, to analyze intraindividual allometric development of aerobic power of 73 boys followed at annual intervals from 8 to 16 yr, and second, to relate scaled aerobic power with level of habitual physical activity and biological maturity status. Methods: Peak (V) over dot O-2 (treadmill), height, and body mass were measured. Biological maturity was based on age at peak height velocity (PHV) and level of physical activity was based on five assessments between 11 and 15 yr and at 17 yr. Interindividual and intraindividual allometric coefficients were calculated. Multilevel modeling was applied to verify if maturity status and activity explain a significant proportion of peak (V) over dot O-2 after controlling for other explanatory characteristics. Results: At most age levels, interindividual allometry coefficients for body mass exceed k = 0.750. Intraindividual coefficients of peak (V) over dot O-2 by body mass vary widely and range from k' = 0,555 to k' = 1,178. Late maturing boys have smaller k' coefficients than early maturing boys. Conclusion: Peak (V) over dot O-2 is largely explained by body mass, but activity level and its interaction with maturity status contribute independently to peak (V) over dot O-2 even after adjusting for body mass.
Resumo:
In Ruddock and Others v Vadarlis and Others the Federal Court had to balance two fundamental but competing rights, the right of the state to secure its frontiers and the rights of individuals not to be subjected to unlawful detention - Court's task was hampered by intense public debate over the illegal refugee crisis - in the wake of 11 September 2001 and the Tampa crisis, the Federal Government has rushed through several amendments to migration laws and border protection legislation.
Resumo:
It has long been supposed that the interference observed in certain patterns of coordination is mediated, at least in part, by peripheral afference from the moving limbs. We manipulated the level of afferent input, arising from movement of the opposite limb, during the acquisition of a complex coordination task. Participants learned to generate flexion and extension movements of the right wrist, of 75degrees amplitude, that were a quarter cycle out of phase with a 1-Hz sinusoidal visual reference signal. On separate trials, the left wrist either was at rest, or was moved passively by a torque motor through 50degrees, 75degrees or 100degrees, in synchrony with the reference signal. Five acquisition sessions were conducted on successive days. A retention session was conducted I week later. Performance was initially superior when the opposite limb was moved passively than when it was static. The amplitude and frequency of active movement were lower in the static condition than in the driven conditions and the variation in the relative phase relation across trials was greater than in the driven conditions. In addition, the variability of amplitude, frequency and the relative phase relation during each trial was greater when the opposite limb was static than when driven. Similar effects were expressed in electromyograms. The most marked and consistent differences in the accuracy and consistency of performance (defined in terms of relative phase) were between the static condition and the condition in which the left wrist was moved through 50degrees. These outcomes were exhibited most prominently during initial exposure to the task. Increases in task performance during the acquisition period, as assessed by a number of kinematic variables, were generally well described by power functions. In addition, the recruitment of extensor carpi radialis (ECR), and the degree of co-contraction of flexor carpi radialis and ECR, decreased during acquisition. Our results indicate that, in an appropriate task context, afferent feedback from the opposite limb, even when out of phase with the focal movement, may have a positive influence upon the stability of coordination.
Resumo:
Input-driven models provide an explicit and readily testable account of language learning. Although we share Ellis's view that the statistical structure of the linguistic environment is a crucial and, until recently, relatively neglected variable in language learning, we also recognize that the approach makes three assumptions about cognition and language learning that are not universally shared. The three assumptions concern (a) the language learner as an intuitive statistician, (b) the constraints on what constitute relevant surface cues, and (c) the redescription problem faced by any system that seeks to derive abstract grammatical relations from the frequency of co-occurring surface forms and functions. These are significant assumptions that must be established if input-driven models are to gain wider acceptance. We comment on these issues and briefly describe a distributed, instance-based approach that retains the key features of the input-driven account advocated by Ellis but that also addresses shortcomings of the current approaches.
Resumo:
We introduce a conceptual model for the in-plane physics of an earthquake fault. The model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain redistribution. The impact of a hypothetical crustal elastodynamic Green's function is approximated by a long-range strain redistribution law with a r(-p) dependance. We investigate the influence of the effective elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments with different values of the exponent (p). The results indicate that this model has two distinct, stable modes of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large events preceeded by an interval of time in which the rate of energy release accelerates. A correlation function analysis reveals that accelerating sequences are associated with a systematic, global evolution of strain energy correlations within the system. The second stable mode produces Gutenberg-Richter statistics, with near-linear energy release and no significant global correlation evolution. A model with effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models with long-range interactions appear to switch between the characteristic and GR modes. As the range of elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These models demonstrate that evolution of strain energy correlations may occur within systems with a fixed elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some earthquakes but not for others, in alignment with certain empirical seismological observations. Further numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting research and theoretical seismology.
Resumo:
Crushing and grinding are the most energy intensive part of the mineral recovery process. A major part of rock size reduction occurs in tumbling mills. Empirical models for the power draw of tumbling mills do not consider the effect of lifters. Discrete element modelling was used to investigate the effect of lifter condition on the power draw of tumbling mill. Results obtained with PFC3D code show that lifter condition will have a significant influence on the power draw and on the mode of energy consumption in the mill. Relatively high lifters will consume less power than low lifters, under otherwise identical conditions. The fraction of the power that will be consumed as friction will increase as the height of the lifters decreases. This will result in less power being used for high intensity comminution caused by the impacts. The fraction of the power that will be used to overcome frictional resistance is determined by the material's coefficient of friction. Based on the modelled results, it appears that the effective coefficient of friction for in situ mill is close to 0.1. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Using a social identity perspective, two experiments examined the effects of power and the legitimacy of power differentials on intergroup bias. In Experiment 1, 125 math-science students were led to believe that they had high or low representation in a university decision-making body relative to social-science students and that this power position was either legitimate or illegitimate. Power did not have an independent effect on bias; rather, members of both high and low power groups showed more bias when the power hierarchy was illegitimate than when it was legitimate. This effect was replicated in Experiment 2 (N =105). In addition, Experiment 2 showed that groups located within an unfair power hierarchy expected the superordinate power body to be more discriminatory than did those who had legitimately high or low power. The results are discussed in terms of their implications for group relations.