967 resultados para Innate Immune-system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To gain insight in the relationship between innate immune system and metabolic disease, we aimed to investigate the effects of lactoferrin in obesity-related metabolic disturbances. Circulating lactoferrin concentration was significantly decreased in subjects with altered glucose tolerance (AGT) and associated negatively with obesity-related metabolic disturbances. The SNPs-induced aminoacidic changes in lactoferrin N-terminus region were associated with a low atherogenic lipid profile. Lactoferrin production in neutrophils decreased significatively in aging, chronic low-grade inflammation and type 2 diabetes. In vitro, lactoferrin increased insulin signaling pathway, even under insulin resistance conditions and displayed dual effects on adipogenesis (antiadipogenic in 3T3-L1 and adipogenic in human adipocytes). In conclusion, lactoferrin might play a potential protective role against insulin resistance and obesity related metabolic disturbances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preface. Iron is considered to be a minor element employed, in a variety of forms, by nearly all living organisms. In some cases, it is utilised in large quantities, for instance for the formation of magnetosomes within magnetotactic bacteria or during use of iron as a respiratory donor or acceptor by iron oxidising or reducing bacteria. However, in most cases the role of iron is restricted to its use as a cofactor or prosthetic group assisting the biological activity of many different types of protein. The key metabolic processes that are dependent on iron as a cofactor are numerous; they include respiration, light harvesting, nitrogen fixation, the Krebs cycle, redox stress resistance, amino acid synthesis and oxygen transport. Indeed, it is clear that Life in its current form would be impossible in the absence of iron. One of the main reasons for the reliance of Life upon this metal is the ability of iron to exist in multiple redox states, in particular the relatively stable ferrous (Fe2+) and ferric (Fe3+) forms. The availability of these stable oxidation states allows iron to engage in redox reactions over a wide range of midpoint potentials, depending on the coordination environment, making it an extremely adaptable mediator of electron exchange processes. Iron is also one of the most common elements within the Earth’s crust (5% abundance) and thus is considered to have been readily available when Life evolved on our early, anaerobic planet. However, as oxygen accumulated (the ‘Great oxidation event’) within the atmosphere some 2.4 billion years ago, and as the oceans became less acidic, the iron within primordial oceans was converted from its soluble reduced form to its weakly-soluble oxidised ferric form, which precipitated (~1.8 billion years ago) to form the ‘banded iron formations’ (BIFs) observed today in Precambrian sedimentary rocks around the world. These BIFs provide a geological record marking a transition point away from the ancient anaerobic world towards modern aerobic Earth. They also indicate a period over which the bio-availability of iron shifted from abundance to limitation, a condition that extends to the modern day. Thus, it is considered likely that the vast majority of extant organisms face the common problem of securing sufficient iron from their environment – a problem that Life on Earth has had to cope with for some 2 billion years. This struggle for iron is exemplified by the competition for this metal amongst co-habiting microorganisms who resort to stealing (pirating) each others iron supplies! The reliance of micro-organisms upon iron can be disadvantageous to them, and to our innate immune system it represents a chink in the microbial armour, offering an opportunity that can be exploited to ward off pathogenic invaders. In order to infect body tissues and cause disease, pathogens must secure all their iron from the host. To fight such infections, the host specifically withdraws available iron through the action of various iron depleting processes (e.g. the release of lactoferrin and lipocalin-2) – this represents an important strategy in our defence against disease. However, pathogens are frequently able to deploy iron acquisition systems that target host iron sources such as transferrin, lactoferrin and hemoproteins, and thus counteract the iron-withdrawal approaches of the host. Inactivation of such host-targeting iron-uptake systems often attenuates the pathogenicity of the invading microbe, illustrating the importance of ‘the battle for iron’ in the infection process. The role of iron sequestration systems in facilitating microbial infections has been a major driving force in research aimed at unravelling the complexities of microbial iron transport processes. But also, the intricacy of such systems offers a challenge that stimulates the curiosity. One such challenge is to understand how balanced levels of free iron within the cytosol are achieved in a way that avoids toxicity whilst providing sufficient levels for metabolic purposes – this is a requirement that all organisms have to meet. Although the systems involved in achieving this balance can be highly variable amongst different microorganisms, the overall strategy is common. On a coarse level, the homeostatic control of cellular iron is maintained through strict control of the uptake, storage and utilisation of available iron, and is co-ordinated by integrated iron-regulatory networks. However, much yet remains to be discovered concerning the fine details of these different iron regulatory processes. As already indicated, perhaps the most difficult task in maintaining iron homeostasis is simply the procurement of sufficient iron from external sources. The importance of this problem is demonstrated by the plethora of distinct iron transporters often found within a single bacterium, each targeting different forms (complex or redox state) of iron or a different environmental condition. Thus, microbes devote considerable cellular resource to securing iron from their surroundings, reflecting how successful acquisition of iron can be crucial in the competition for survival. The aim of this book is provide the reader with an overview of iron transport processes within a range of microorganisms and to provide an indication of how microbial iron levels are controlled. This aim is promoted through the inclusion of expert reviews on several well studied examples that illustrate the current state of play concerning our comprehension of how iron is translocated into the bacterial (or fungal) cell and how iron homeostasis is controlled within microbes. The first two chapters (1-2) consider the general properties of microbial iron-chelating compounds (known as ‘siderophores’), and the mechanisms used by bacteria to acquire haem and utilise it as an iron source. The following twelve chapters (3-14) focus on specific types of microorganism that are of key interest, covering both an array of pathogens for humans, animals and plants (e.g. species of Bordetella, Shigella, , Erwinia, Vibrio, Aeromonas, Francisella, Campylobacter and Staphylococci, and EHEC) as well as a number of prominent non-pathogens (e.g. the rhizobia, E. coli K-12, Bacteroides spp., cyanobacteria, Bacillus spp. and yeasts). The chapters relay the common themes in microbial iron uptake approaches (e.g. the use of siderophores, TonB-dependent transporters, and ABC transport systems), but also highlight many distinctions (such as use of different types iron regulator and the impact of the presence/absence of a cell wall) in the strategies employed. We hope that those both within and outside the field will find this book useful, stimulating and interesting. We intend that it will provide a source for reference that will assist relevant researchers and provide an entry point for those initiating their studies within this subject. Finally, it is important that we acknowledge and thank wholeheartedly the many contributors who have provided the 14 excellent chapters from which this book is composed. Without their considerable efforts, this book, and the understanding that it relays, would not have been possible. Simon C Andrews and Pierre Cornelis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Respiratory syncytial virus (RSV) bronchiolitis is the leading cause of lower respiratory tract infection, and the most frequent reason for hospitalization among infants throughout the world. In addition to the acute consequences of the disease, RSV bronchiolitis in early childhood is related to further development of recurrent wheezing and asthma. Despite the medical and economic burden of the disease, therapeutic options are limited to supportive measures, and mechanical ventilation in severe cases. Growing evidence suggests an important role of changes in pulmonary surfactant content and composition in the pathogenesis of severe RSV bronchiolitis. Besides the well-known importance of pulmonary surfactant in maintenance of pulmonary homeostasis and lung mechanics, the surfactant proteins SP-A and SP-D are essential components of the pulmonary innate immune system. Deficiencies of such proteins, which develop in severe RSV bronchiolitis, may be related to impairment in viral clearance, and exacerbated inflammatory response. A comprehensive understanding of the role of the pulmonary surfactant in the pathogenesis of the disease may help the development of new treatment strategies. We conducted a review of the literature to analyze the evidences of pulmonary surfactant changes in the pathogenesis of severe RSV bronchiolitis, its relation to the inflammatory and immune response, and the possible role of pulmonary surfactant replacement in the treatment of the disease. Pediatr Pulmonol. 2011; 46:415-420. (c) 2010 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Exercise training restores innate immune system cell function in post-myocardial infarction (post-MI) rats. However, studies of the involvement of lymphocyte (Ly) in the setting of the congestive heart failure (CHF) are few. To address this issue, we investigated the function of Ly obtained from cervical lymph nodes from post-MI CHF rats submitted to treadmill running training. Methods: Twenty-five male Wistar rats were randomly assigned to the following groups: rats submitted to ligation of the left coronary artery, which were sedentary (MI-S, N= 7, only limited activity) or trained (MI-T, N= 6, on a treadmill (0% grade at 13-20 m.m(-1)) for 60 min.d(-1), 5 d.wk(-1), for 8-10 wk); or sham-operated rats, which were sedentary (sham-S, N = 6) or trained (sham-T, N = 6). The incorporation of [2-C-14]-thymidine by Ly cultivated in the presence of concanavalin A (Con A) and lipopolysaccharide (LPS), cytokine production by Ly cultivated in the presence of phytohemagglutinin (PHA), and plasma concentration of glutamine were assessed in all groups, 48 h after the last exercise session. Results: Proliferative capacity was increased, following incubation with Con-A in the MI groups, when compared with the sham counterparts. When incubated in the presence of PHA, MI-S produced more IL-4 (96%) than sham-S (P < 0.001). The training protocol induced a 2.2-fold increase in the production of interleukin-2 (P < 0.001) of the cells obtained from the cervical lymph nodes of MI-T, compared with MI-S. Conclusion: The moderate endurance training protocol caused an increase in IL-2 production, and a trend toward the reversion of the Th-1/Th-2 imbalance associated with IL-4 production increased in the post-MI CHF animal model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antimicrobial peptides (AMPs) are essential for the innate immune system of eukaryotes, imparting protection against pathogens and their proliferation in host organisms. The recent interest in AMPs as active materials in bionanostructures is due to the properties shown by these biological molecules, such as the presence of an alpha-helix structure and distribution of positive charges along the chain. In this study the antimicrobial peptide dermaseptin 01 (DS 01), from the skin secretion of Phyllomedusa hypochondrialis frogs was immobilized in nanostructured layered films in conjunction with nickel tetrasulfonated phthalocyanines. The leishmanicidal activity of DS 01 was confirmed using kinetic essays, in which DS 01 promoted death of all metacyclic promastigote cells in 45 minutes. Surprisingly, the immobilized DS 01 molecules displayed electroactivity, as revealed by electrochemical experiments, in which an oxidation peak at about 0.61 V was observed for a DS 01 monolayer deposited on top of a conductive electrode. Such electroactivity was used to investigate the sensing abilities of the nanostructured films toward Leishmania. We observed an increase in the oxidation current as a function of number of Leishmania cells in the electrolytic solution at concentrations down to 10(3) cells/mL. The latter is indicative that the use of AMPs immobilized in electroactive nanostructured films may be of interest for applications in the pharmaceutical industry and diagnosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The innate immune reaction to tissue injury is a natural process, which can have detrimental effects in the absence of negative feedbacks by glucocorticoids (GCs). Although acute lipopolysaccharide (LPS) challenge is relatively harmless to the brain parenchyma of adult animals, the endotoxin is highly neurotoxic in animals that are treated with the GC receptor antagonist RU486. This study investigated the role of cytokines of the gp130-related family in these effects, because they are essential components of the inflammatory process that provide survival signals to neurons. Intracerebral LPS injection stimulated expression of several members of this family of cytokines, but oncostatin M (Osm) was the unique ligand to be completely inhibited by the RU486 treatment. OSM receptor (Osmr) is expressed mainly in astrocytes and endothelial cells following LPS administration and GCs are directly responsible for its transcriptional activation in the presence of the endotoxin. In a mouse model of demyelination, exogenous OSM significantly modulated the expression of genes involved in the mobilization of oligodendrocyte precursor cells (OPCs), differentiation of oligodendrocyte, and production of myelin. In conclusion, the activation of OSM signaling is a mechanism activated by TLR4 in the presence of negative feedback by GCs on the innate immune system of the brain. OSM absence is associated with detrimental effects of LPS, whereas exogenous OSM favors repair response to demyelinated regions. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hipertrofia ventricular esquerda é um importante fator de risco em doença cardiovascular e pode ser responsável por parte do elevado risco cardiovascular associado a diabetes. Apesar de que o estresse hemodinâmico seja classicamente indicado como causa da injúria miocárdica que leva ao remodelamento, a injúria associada aos fatores neuro-humorais e a sinalização celular através da ativação imuno-inflamatória também desempenham um papel, acompanhando os mecanismos recentemente descritos na síndrome metabólica, particularmente na obesidade, onde a ativação do sistema imune inato leva a uma resposta inadequada crônica mediada por citocinas em diversos sistemas corpóreos. A ecocardiografia tem sido usada para identificar anormalidades da estrutura cardíaca, porém, variações metodológicas e os diversos ajustes para os determinantes da massa ventricular como idade, sexo, tamanho corporal e outros correlatos clínicos são motivo de debate, assim como a definição dos estados de anormalidade, tanto para hipertrofia ventricular esquerda, como para outras medidas da estrutura ventricular. Em uma amostra populacional de 1479 Afro- Americanos do Estudo ARIC, investigamos de forma estratificada e multivariada as associações independentes entre diabetes e as alterações estruturais do ventrículo esquerdo, definidas por hipertrofia ventricular, aumento da espessura relativa e padrões geométricos anormais. Encontramos prevalências elevadas dea alterações estruturais nos indivíduos com diabetes. Diabetes associou-se com hipertrofia ventricular em ambos os sexos e com espessura parietal aumentada e padrões geométricos anormais nas mulheres. Na maior parte dos modelos, as associações com diabetes foram minimizadas com os ajustes para obesidade, sugerindo que o impacto da obesidade sobre as alterações estruturais vistas em diabetes pode ser mediado por fatores outros do que a hiperglicemia. Essas novas evidências estão em sintonia com o conhecimento contemporâneo descrito.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effect of extract of Aloe vera in the transport water of matrinxã (Brycon amazonicus) fish on stress response and leukocyte respiratory activity. Fish was transported for 4 h in water containing Aloe at levels 0; 0.02; 0.2 and 2 mg/L, and sampled before transport 2, 4, 24 and 96 h after for determination of plasma glucose and respiratory activity of leukocytes. An additional in vitro assay was conducted with another fish species, pacu (Piaractus mesopotamicus), to test the respiratory burst of leukocytes exposed to Aloe extract (0.0, phosphate-buffered saline (PBS) only) at 0.1, 0.2, 0.5 and 1 mg/L). Plasma glucose increased after 2 and 4 h of transport and returned to control levels within 24 h, but the addition of Aloe in the transport water did not affect the level of blood glucose. However, at 2 h of transport, Aloe enhanced the respiratory activity of leukocytes in a dose-dependent way. The highest value of respiratory burst activity of leukocytes was observed in the fish transported in water containing Aloe at 2 mg/L. The enhancing effect of the plant extract on the production of oxygen radicals was confirmed in vitro in leukocytes of pacu incubated in Aloe at concentrations 0.1 and 0.2 mg/L. The results suggest that Aloe vera is a modulator of the immune system in fish improving the innate immune response tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leukotrienes are classic inflammatory response mediators considered chemotactic agents and microbicidal activity regulators in cells of the innate immune system, playing a protective role against different infectious agents. In this study, we investigated the involvement of leukotrienes in the course of murine paracoccidioidomycosis based on the following immunologic parameters: cell influx, mieloperoxydase activity, NO production, cytokine production, and fungal recovery in lungs of mice selected according to the intensity of their low (AIRmin) and high (AIRmax) acute inflammatory response. Infection by P. brasiliensis induced considerable production of IL-6, IL-10, IFN-gamma and TNF-alpha cytokines, and led to cell recruitment, as well as NO production in lungs at different study periods. In animals treated with MK886, a leukotriene biosynthesis inhibitor, IFN-gamma, IL-6 and TNF-alpha production was lower, while neutrophil influx and NO production decreased. These results may explain the higher fungal load in lungs of animals in which leukotriene synthesis was inhibited, suggesting that leukotrienes have a possible protective role in experimental paracoccidioidomycosis. AIRmax animals had lower fungal load in comparison with AIRmin ones, which can be related to the AIR phenotype regarding neutrophil migration, besides lower production of NO and pro-inflammatory cytokines. Thus, mice presenting AIRmax background are more resistant to infection by P. brasiliensis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mast cell is a powerful effector cell for the innate immune system, acting through the secretion of several distinct mediators. Few studies have demonstrated the relationship between mast cells and toxoplasmosis. In this study, mast cells were investigated in two experimental Toxoplasma infections using Calomys callosus (Rodentia: Cricetidae) as the host. Animals were inoculated either intraperitoneally or via the conjunctiva with tachyzoites of Toxoplasma gondii (RH strain) and sacrificed after 5 days or 24 h, respectively. Enucleated eyes were processed for histological and ultrastructural analysis. Neither experimental infection altered the localization of mast cells compared to control eyes, but they did lead to an accumulation in some tissues as well as to their activation. There was a significant increase in the number of mast cells within 5 days and 24 h after infection. The ocular lesions were characterized by the presence of tachyzoites, inflammatory cells and vasodilatation in the iris and retina. In conclusion, mast cells were mobilized in these experimental infections, suggesting that they play an important role in the host inflammatory response after infection with T. gondii.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To determine whether histologic chorioamnionitis is associated with changes in gene expression of TLR-1, -2, -4 and -6, and to describe the localization of these receptors in fetal membranes. Study design: A total of 135 amniochorion membranes with or without histologic chorioamnionitis from preterm or term deliveries were included. Fragments of membranes were submitted to total RNA extraction. RNA was reverse transcribed and the quantification of TLRs expression measured by real time PCR. Results: All amniochorion membranes expressed TLR-1 and TLR-4, whereas 99.1% of membranes expressed TLR-2 and 77.4% expressed TLR-6. TLR-1 and TLR-2 expressions were significantly higher in membranes with histologic chorioamnionitis as compared to membranes without chorioamnionitis in preterm pregnancies (p = 0.003 and p < 0.001, respectively). Among the membranes of term pregnancies there were no differences in the expressions of such receptors regardless of inflammatory status. Regarding TLR-4 and TLR-6 expression, there was no difference among membranes with or without histologic chorioamnionitis, regardless gestational age at delivery. TLR-1, TLR-2, TLR-4 and TLR-6 expressions were observed in amniotic epithelial, chorionic and decidual cells. Conclusion: Amniochorion membranes express TLR-1, TLR-2, TLR-4 and TLR-6 and increased expression of TLR-1 and TLR-2 is related to the presence of histologic chorioamnionitis in preterm pregnancies. This study provides further evidence that amniochorion membranes act as a mechanical barrier to microorganisms and as components of the innate immune system. © 2013 Elsevier B.V. All rights reserved.