906 resultados para Information Science|Computer Science
Resumo:
Evidence demonstrates that the digital divide is deepening despite strategies mobilized worldwide to reduce it. In disadvantaged communities, beyond training and infrastructural issues, there often lies a range of cultural and historically formed relationships that affect people's adoption of ICTs. This article presents an analysis of local resident's engagement with their council's pilot project to develop a computer facility in their community center. We ask, to what extent can people in poor urban communities, once trained, be expected to volunteer to work on furthering community education and development in ICTs in their local area? Findings indicate four patterns of individual engagement with the computer project: reflexive, utilitarian, distributive, and nonparticipatory. It is argued that local people engaged with the intervention in historically patterned and locally distinctive ways that served immediate personal and pragmatic ends. They did not adopt the long-term strategic goals of the council or university.
Resumo:
Refinement in software engineering allows a specification to be developed in stages, with design decisions taken at earlier stages constraining the design at later stages. Refinement in complex data models is difficult due to lack of a way of defining constraints, which can be progressively maintained over increasingly detailed refinements. Category theory provides a way of stating wide scale constraints. These constraints lead to a set of design guidelines, which maintain the wide scale constraints under increasing detail. Previous methods of refinement are essentially local, and the proposed method does not interfere very much with these local methods. The result is particularly applicable to semantic web applications, where ontologies provide systems of more or less abstract constraints on systems, which must be implemented and therefore refined by participating systems. With the approach of this paper, the concept of committing to an ontology carries much more force. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A framework for developing marketing category management decision support systems (DSS) based upon the Bayesian Vector Autoregressive (BVAR) model is extended. Since the BVAR model is vulnerable to permanent and temporary shifts in purchasing patterns over time, a form that can correct for the shifts and still provide the other advantages of the BVAR is a Bayesian Vector Error-Correction Model (BVECM). We present the mechanics of extending the DSS to move from a BVAR model to the BVECM model for the category management problem. Several additional iterative steps are required in the DSS to allow the decision maker to arrive at the best forecast possible. The revised marketing DSS framework and model fitting procedures are described. Validation is conducted on a sample problem.
Resumo:
Online communities have evolved beyond the realm of social phenomenon to become important knowledge-sharing media with real economic consequences. However, the sharing of knowledge and the communication of meaning through Internet technology presents many difficulties. This is particularly so for online finance forums where market-sensitive information and disinformation about exchange-traded stocks is regularly disseminated. The development of trust and the effect of misinformation in this environment are important in the growth of this communication medium. Forum administrators need to better understand and handle the development of trust. In this article, we analyze and discuss the communicative practices of a group of investors and members of an online community of interest. We found that conflict as a driver of knowledge sharing is an important consideration for forum administrators and designers.
Resumo:
In this paper, we present ICICLE (Image ChainNet and Incremental Clustering Engine), a prototype system that we have developed to efficiently and effectively retrieve WWW images based on image semantics. ICICLE has two distinguishing features. First, it employs a novel image representation model called Weight ChainNet to capture the semantics of the image content. A new formula, called list space model, for computing semantic similarities is also introduced. Second, to speed up retrieval, ICICLE employs an incremental clustering mechanism, ICC (Incremental Clustering on ChainNet), to cluster images with similar semantics into the same partition. Each cluster has a summary representative and all clusters' representatives are further summarized into a balanced and full binary tree structure. We conducted an extensive performance study to evaluate ICICLE. Compared with some recently proposed methods, our results show that ICICLE provides better recall and precision. Our clustering technique ICC facilitates speedy retrieval of images without sacrificing recall and precision significantly.
Resumo:
In this paper, we present a novel indexing technique called Multi-scale Similarity Indexing (MSI) to index image's multi-features into a single one-dimensional structure. Both for text and visual feature spaces, the similarity between a point and a local partition's center in individual space is used as the indexing key, where similarity values in different features are distinguished by different scale. Then a single indexing tree can be built on these keys. Based on the property that relevant images have similar similarity values from the center of the same local partition in any feature space, certain number of irrelevant images can be fast pruned based on the triangle inequity on indexing keys. To remove the dimensionality curse existing in high dimensional structure, we propose a new technique called Local Bit Stream (LBS). LBS transforms image's text and visual feature representations into simple, uniform and effective bit stream (BS) representations based on local partition's center. Such BS representations are small in size and fast for comparison since only bit operation are involved. By comparing common bits existing in two BSs, most of irrelevant images can be immediately filtered. To effectively integrate multi-features, we also investigated the following evidence combination techniques-Certainty Factor, Dempster Shafer Theory, Compound Probability, and Linear Combination. Our extensive experiment showed that single one-dimensional index on multi-features improves multi-indices on multi-features greatly. Our LBS method outperforms sequential scan on high dimensional space by an order of magnitude. And Certainty Factor and Dempster Shafer Theory perform best in combining multiple similarities from corresponding multiple features.
Resumo:
Summarizing topological relations is fundamental to many spatial applications including spatial query optimization. In this article, we present several novel techniques to effectively construct cell density based spatial histograms for range (window) summarizations restricted to the four most important level-two topological relations: contains, contained, overlap, and disjoint. We first present a novel framework to construct a multiscale Euler histogram in 2D space with the guarantee of the exact summarization results for aligned windows in constant time. To minimize the storage space in such a multiscale Euler histogram, an approximate algorithm with the approximate ratio 19/12 is presented, while the problem is shown NP-hard generally. To conform to a limited storage space where a multiscale histogram may be allowed to have only k Euler histograms, an effective algorithm is presented to construct multiscale histograms to achieve high accuracy in approximately summarizing aligned windows. Then, we present a new approximate algorithm to query an Euler histogram that cannot guarantee the exact answers; it runs in constant time. We also investigate the problem of nonaligned windows and the problem of effectively partitioning the data space to support nonaligned window queries. Finally, we extend our techniques to 3D space. Our extensive experiments against both synthetic and real world datasets demonstrate that the approximate multiscale histogram techniques may improve the accuracy of the existing techniques by several orders of magnitude while retaining the cost efficiency, and the exact multiscale histogram technique requires only a storage space linearly proportional to the number of cells for many popular real datasets.
Resumo:
Visualising data for exploratory analysis is a major challenge in many applications. Visualisation allows scientists to gain insight into the structure and distribution of the data, for example finding common patterns and relationships between samples as well as variables. Typically, visualisation methods like principal component analysis and multi-dimensional scaling are employed. These methods are favoured because of their simplicity, but they cannot cope with missing data and it is difficult to incorporate prior knowledge about properties of the variable space into the analysis; this is particularly important in the high-dimensional, sparse datasets typical in geochemistry. In this paper we show how to utilise a block-structured correlation matrix using a modification of a well known non-linear probabilistic visualisation model, the Generative Topographic Mapping (GTM), which can cope with missing data. The block structure supports direct modelling of strongly correlated variables. We show that including prior structural information it is possible to improve both the data visualisation and the model fit. These benefits are demonstrated on artificial data as well as a real geochemical dataset used for oil exploration, where the proposed modifications improved the missing data imputation results by 3 to 13%.
Resumo:
The practice of evidence-based medicine involves consulting documents from repositories such as Scopus, PubMed, or the Cochrane Library. The most common approach for presenting retrieved documents is in the form of a list, with the assumption that the higher a document is on a list, the more relevant it is. Despite this list-based presentation, it is seldom studied how physicians perceive the importance of the order of documents presented in a list. This paper describes an empirical study that elicited and modeled physicians' preferences with regard to list-based results. Preferences were analyzed using a GRIP method that relies on pairwise comparisons of selected subsets of possible rank-ordered lists composed of 3 documents. The results allow us to draw conclusions regarding physicians' attitudes towards the importance of having documents ranked correctly on a result list, versus the importance of retrieving relevant but misplaced documents. Our findings should help developers of clinical information retrieval applications when deciding how retrieved documents should be presented and how performance of the application should be assessed. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
The paper discusses both the complementary factors and contradictions of adoption ERP based systems with enterprise 2.0. ERP is well known as its' efficient business process management. Also the high failure rate the system implementation is famous as well. According to [1], ERP systems could achieve efficient business performance by enabling a standardized business process design, but at a cost of flexibility in operations. However, enterprise 2.0 supports flexible business process management, informal and less structured interactions [3],[4],[21]. Traditional researcher claimed efficiency and flexibility may seem incompatible in that they are different business objectives and may exist in different organizational environments. However, the paper will break traditional norms that combine ERP and enterprise 2.0 in a single enterprise to improve both efficient and flexible operations simultaneously. Based on the multiple cases studies, four cases presented different attitudes on usage ERP systems and enterprise social systems. Based on socio-technical theory, the paper presents in-depth analysis benefits of combination ERP with enterprise 2.0 for these firms.
Resumo:
IEEE 802.15.4 standard has been recently developed for low power wireless personal area networks. It can find many applications for smart grid, such as data collection, monitoring and control functions. The performance of 802.15.4 networks has been widely studied in the literature. However the main focus has been on the modeling throughput performance with frame collisions. In this paper we propose an analytic model which can model the impact of frame collisions as well as frame corruptions due to channel bit errors. With this model the frame length can be carefully selected to improve system performance. The analytic model can also be used to study the 802.15.4 networks with interference from other co-located networks, such as IEEE 802.11 and Bluetooth networks. © 2011 Springer-Verlag.
Resumo:
IEEE 802.15.4 networks (also known as ZigBee networks) has the features of low data rate and low power consumption. In this paper we propose an adaptive data transmission scheme which is based on CSMA/CA access control scheme, for applications which may have heavy traffic loads such as smart grids. In the proposed scheme, the personal area network (PAN) coordinator will adaptively broadcast a frame length threshold, which is used by the sensors to make decision whether a data frame should be transmitted directly to the target destinations, or follow a short data request frame. If the data frame is long and prone to collision, use of a short data request frame can efficiently reduce the costs of the potential collision on the energy and bandwidth. Simulation results demonstrate the effectiveness of the proposed scheme with largely improve bandwidth and power efficiency. © 2011 Springer-Verlag.
Resumo:
Quality of services (QoS) support is critical for dedicated short range communications (DSRC) vehicle networks based collaborative road safety applications. In this paper we propose an adaptive power and message rate control method for DSRC vehicle networks at road intersections. The design objective is to provide high availability and low latency channels for high priority emergency safety applications while maximizing channel utilization for low priority routine safety applications. In this method an offline simulation based approach is used to find out the best possible configurations of transmit power and message rate for given numbers of vehicles in the network. The identified best configurations are then used online by roadside access points (AP) according to estimated number of vehicles. Simulation results show that this adaptive method significantly outperforms a fixed control method. © 2011 Springer-Verlag.
Resumo:
Relay selection has been considered as an effective method to improve the performance of cooperative communication. However, the Channel State Information (CSI) used in relay selection can be outdated, yielding severe performance degradation of cooperative communication systems. In this paper, we investigate the relay selection under outdated CSI in a Decode-and-Forward (DF) cooperative system to improve its outage performance. We formulize an optimization problem, where the set of relays that forwards data is optimized to minimize the probability of outage conditioned on the outdated CSI of all the decodable relays’ links. We then propose a novel multiple-relay selection strategy based on the solution of the optimization problem. Simulation results show that the proposed relay selection strategy achieves large improvement of outage performance compared with the existing relay selection strategies combating outdated CSI given in the literature.
Resumo:
It is important to help researchers find valuable papers from a large literature collection. To this end, many graph-based ranking algorithms have been proposed. However, most of these algorithms suffer from the problem of ranking bias. Ranking bias hurts the usefulness of a ranking algorithm because it returns a ranking list with an undesirable time distribution. This paper is a focused study on how to alleviate ranking bias by leveraging the heterogeneous network structure of the literature collection. We propose a new graph-based ranking algorithm, MutualRank, that integrates mutual reinforcement relationships among networks of papers, researchers, and venues to achieve a more synthetic, accurate, and less-biased ranking than previous methods. MutualRank provides a unified model that involves both intra- and inter-network information for ranking papers, researchers, and venues simultaneously. We use the ACL Anthology Network as the benchmark data set and construct the gold standard from computer linguistics course websites of well-known universities and two well-known textbooks. The experimental results show that MutualRank greatly outperforms the state-of-the-art competitors, including PageRank, HITS, CoRank, Future Rank, and P-Rank, in ranking papers in both improving ranking effectiveness and alleviating ranking bias. Rankings of researchers and venues by MutualRank are also quite reasonable.