869 resultados para Inflammation.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trypsin and mast cell tryptase cleave proteinase-activated receptor 2 and, by unknown mechanisms, induce widespread inflammation. We found that a large proportion of primary spinal afferent neurons, which express proteinase-activated receptor 2, also contain the proinflammatory neuropeptides calcitonin gene-related peptide and substance P. Trypsin and tryptase directly signal to neurons to stimulate release of these neuropeptides, which mediate inflammatory edema induced by agonists of proteinase-activated receptor 2. This new mechanism of protease-induced neurogenic inflammation may contribute to the proinflammatory effects of mast cells in human disease. Thus, tryptase inhibitors and antagonists of proteinase-activated receptor 2 may be useful anti-inflammatory agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several recent reports suggest that inflammatory signals play a decisive role in the self-renewal, migration and differentiation of multipotent neural stem cells (NSCs). NSCs are believed to be able to ameliorate the symptoms of several brain pathologies through proliferation, migration into the area of the lesion and either differentiation into the appropriate cell type or secretion of anti-inflammatory cytokines. Although NSCs have beneficial roles, current evidence indicates that brain tumours, such as astrogliomas or ependymomas are also caused by tumour-initiating cells with stem-like properties. However, little is known about the cellular and molecular processes potentially generating tumours from NSCs. Most pro-inflammatory conditions are considered to activate the transcription factor NF-kappaB in various cell types. Strong inductive effects of NF-kappaB on proliferation and migration of NSCs have been described. Moreover, NF-kappaB is constitutively active in most tumour cells described so far. Chronic inflammation is also known to initiate cancer. Thus, NF-kappaB might provide a novel mechanistic link between chronic inflammation, stem cells and cancer. This review discusses the apparently ambivalent role of NF-kappaB: physiological maintenance and repair of the brain via NSCs, and a potential role in tumour initiation. Furthermore, it reveals a possible mechanism of brain tumour formation based on inflammation and NF-kappaB activity in NSCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of chronic low-grade inflammation in the pathology of numerous age-related chronic conditions is now clear. An unresolved inflammatory response is likely to be involved from the early stages of disease development. The present position paper is the most recent in a series produced by the International Life Sciences Institute's European Branch (ILSI Europe). It is co-authored by the speakers from a 2013 workshop led by the Obesity and Diabetes Task Force entitled ‘Low-grade inflammation, a high-grade challenge: biomarkers and modulation by dietary strategies’. The latest research in the areas of acute and chronic inflammation and cardiometabolic, gut and cognitive health is presented along with the cellular and molecular mechanisms underlying inflammation–health/disease associations. The evidence relating diet composition and early-life nutrition to inflammatory status is reviewed. Human epidemiological and intervention data are thus far heavily reliant on the measurement of inflammatory markers in the circulation, and in particular cytokines in the fasting state, which are recognised as an insensitive and highly variable index of tissue inflammation. Potential novel kinetic and integrated approaches to capture inflammatory status in humans are discussed. Such approaches are likely to provide a more discriminating means of quantifying inflammation–health/disease associations, and the ability of diet to positively modulate inflammation and provide the much needed evidence to develop research portfolios that will inform new product development and associated health claims.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective/Background: Traditionally, sclerotherapy has been thought to work by the cytotoxic effect of the sclerosant upon the endothelium alone. However, studies have shown that sclerotherapy is more successful in smaller veins than in larger veins. This could be explained by the penetration of the sclerosant, or its effect, into the media. This study aimed to investigate intimal and medial damage profiles after sclerosant treatment. Methods: Fresh human varicose veins were treated ex vivo with either 1% or 3% sodium tetradecyl sulphate (STS) for 1 or 10 minutes. The effect of the sclerosant on the vein wall was investigated by immunofluorescent labelling of transverse vein sections using markers for endothelium (CD31), smooth muscle (a-actin), apoptosis (p53) and inflammation (intercellular adhesion molecule-1 [ICAM-1]). Polidocanol (POL; 3%) treatment at 10 minutes was similarly investigated. Results: Endothelial cell death was concentration- and time-dependent for STS but incomplete for both sclerosants. Time, but not concentration, significantly affected cell death (p > .001). A 40% and 30% maximum reduction was observed for STS and POL, respectively. Destruction of 20e30% of smooth muscle cells was found up to 250 mm from the lumen after 3% STS treatment for 10 minutes. POL treatment for 10 minutes showed inferior destruction of medial cells. Following STS treatment and 24-hour tissue culture, p53 and ICAM-1 were upregulated to a depth of around 300 mm. This effect was not observed with POL. Conclusion: Inflammatory and apoptotic markers show the same distribution as medial cell death, implying that sclerotherapy with STS works by inducing apoptosis in the vein wall rather than having an effect restricted to the endothelium. Incomplete loss of endothelial cells and penetration of the sclerosant effect up to 250 mm into the media suggest that medial damage is crucial to the success of sclerotherapy and may explain why it is less effective in larger veins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidemiologic studies highlight the potential role of dietary selenium (Se) in colorectal cancer prevention. Our goal was to elucidate whether expression of factors crucial for colorectal homoeostasis is affected by physiologic differences in Se status. Using transcriptomics and proteomics followed by pathway analysis, we identified pathways affected by Se status in rectal biopsies from 22 healthy adults, including 11 controls with optimal status (mean plasma Se = 1.43 μM) and 11 subjects with suboptimal status (mean plasma Se = 0.86 μM). We observed that 254 genes and 26 proteins implicated in cancer (80%), immune function and inflammatory response (40%), cell growth and proliferation (70%), cellular movement, and cell death (50%) were differentially expressed between the 2 groups. Expression of 69 genes, including selenoproteins W1 and K, which are genes involved in cytoskeleton remodelling and transcription factor NFκB signaling, correlated significantly with Se status. Integrating proteomics and transcriptomics datasets revealed reduced inflammatory and immune responses and cytoskeleton remodelling in the suboptimal Se status group. This is the first study combining omics technologies to describe the impact of differences in Se status on colorectal expression patterns, revealing that suboptimal Se status could alter inflammatory signaling and cytoskeleton in human rectal mucosa and so influence cancer risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we investigated the effect of the supplementation with the dipeptide L-alanyl-L-glutamine (DIP) and a solution containing L-glutamine and L-alanine on plasma levels markers of muscle damage and levels of pro-inflammatory cytokines and glutamine metabolism in rats submitted to prolonged exercise. Rats were submitted to sessions of swim training for 6 weeks. Twenty-one days prior to euthanasia, the animals were supplemented with DIP (n = 8) (1.5 g.kg(-1)), a solution of free L-glutamine (1 g.kg(-1)) and free L-alanine (0.61 g.kg(-1)) (G&A, n = 8) or water (control (CON), n = 8). Animals were killed at rest before (R), after prolonged exercise (PE-2 h of exercise). Plasma concentrations of glutamine, glutamate, tumour necrosis factor-alpha (TNF-alpha), prostaglandin E2 (PGE2) and activity of creatine kinase (CK), lactate dehydrogenase (LDH) and muscle concentrations Of glutamine and glutamate were measured. The concentrations of plasma TNF-alpha, PGE2 and the activity of CK were lower in the G&A-R and DIP-R groups, compared to the CON-R. Glutamine in plasma (p < 0.04) and soleus muscle (p < 0.001) was higher in the DIP-R and G&A-R groups relative to the CON-R group. G&A-PE and DIP-PE groups exhibited lower concentrations of plasma PGE2 (p < 0.05) and TNF-alpha (p < 0.05), and higher concert I rations of glutamine and glutamate in soleus (p < 0.001) and gastrocnemius muscles (p < 0.05) relative to the CON-PE group. We concluded that supplementation with free L-glutamine and the dipeptide LL-alanyl-LL-glutamine represents an effective source of glutamine, which may attenuate inflammation biomarkers after periods of training and plasma levels of CK and the inflammatory response induced by prolonged exercise. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An acute enteritis is commonly followed by intestinal neuromuscular dysfunction, including prolonged hyperexcitability of enteric neurons. Such motility disorders are associated with maintained increases in immune cells adjacent to enteric ganglia and in the mucosa. However, whether the commonly used animal model, trinitrobenzene sulphonate (TNBS)-induced enteritis, causes histological and immune cell changes similar to human enteric neuropathies is not clear. We have made a detailed study of the mucosal damage and repair and immune cell invasion following intralumenal administration of TNBS. Intestines from untreated, sham-operated and TNBS-treated animals were examined at 3 h to 56 days. At 3 h, the mucosal surface was completely ablated, by 6 h an epithelial covering was substantially restored and by 1 day there was full re-epithelialisation. The lumenal epithelium developed from a squamous cell covering to a fully differentiated columnar epithelium with mature villi at about 7 days. Prominent phagocytic activity of enterocytes occurred at 1-7 days. A surge of eosinophils and T lymphocytes associated with the enteric nerve ganglia occurred at 3 h to 3 days. However, elevated immune cell numbers occurred in the lamina propria of the mucosa until 56 days, when eosinophils were still three times normal. We conclude that the disruption of the mucosal surface that causes TNBS-induced ileitis is brief, a little more than 6 h, and causes a transient immune cell surge adjacent to enteric ganglia. This is much briefer than the enteric neuropathy that ensues. Ongoing mucosal inflammatory reaction may contribute to the persistence of enteric neuropathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P>The genesis and progression of diabetes occur due in part to an uncontrolled inflammation profile with insulin resistance, increased serum levels of free fatty acids (FFA), proinflammatory cytokines and leucocyte dysfunction. In this study, an investigation was made of the effect of a 3-week moderate exercise regimen on a treadmill (60% of VO(2max), 30 min/day, 6 days a week) on inflammatory markers and leucocyte functions in diabetic rats. The exercise decreased serum levels of tumour necrosis factor (TNF)-alpha (6%), cytokine-induced neutrophil chemotactic factor 2 alpha/beta (CINC-2 alpha/beta) (9%), interleukin (IL)-1 beta (34%), IL-6 (86%), C-reactive protein (CRP) (41%) and FFA (40%) in diabetic rats when compared with sedentary diabetic animals. Exercise also attenuated the increased responsiveness of leucocytes from diabetics when compared to controls, diminishing the reactive oxygen species (ROS) release by neutrophils (21%) and macrophages (28%). Exercise did not change neutrophil migration and the proportion of neutrophils and macrophages in necrosis (loss of plasma membrane integrity) and apoptosis (DNA fragmentation). Serum activities of creatine kinase (CK) and lactate dehydrogenase (LDH) were not modified in the conditions studied. Therefore, physical training did not alter the integrity of muscle cells. We conclude that moderate physical exercise has marked anti-inflammatory effects on diabetic rats. This may be an efficient strategy to protect diabetics against microorganism infection, insulin resistance and vascular complications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Cytokines (IL-6, IL-10 and TNF-alpha) are increased after exhaustive exercise in the rat retroperitoneal (RPAT) and mesenteric adipose tissue (MEAT) pads. On the other hand, these cytokines show decreased expression in these depots in response to a chronic exercise protocol. However, the effect of exercise with overload combined with a short recovery period on pro-and anti-inflammatory cytokine expression is unknown. In the present study, we investigated the regulation of cytokine production in the adipose tissue of rats after an overtraining-inducing exercise protocol. Methods: Male Wistar rats were divided into four groups: Control (C), Trained (Tr), Overtrained (OT) and recovered overtrained (R). Cytokines (IL-6, TNF-alpha and IL-10) levels and Toll Like Receptor 4 (TLR4), Nuclear Factor kBBp65 (NF-kBp65), Hormone Sensitive Lipase (HSL) and, Perilipin protein expression were assessed in the adipose tissue. Furthermore, we analysed plasma lipid profile, insulin, testosterone, corticosterone and endotoxin levels, and liver triacylglycerol, cytokine content, as well as apolipoprotein B (apoB) and TLR4 expression in the liver. Results: OT and R groups exhibited reduced performance accompanied by lower testosterone and increased corticosterone and endotoxin levels when compared with the control and trained groups. IL-6 and IL-10 protein levels were increased in the adipose tissue of the group allowed to recover, in comparison with all the other studied groups. TLR-4 and NF-kBp65 were increased in this same group when compared with both control and trained groups. The protein expression of HSL was increased and that of Perilipin, decreased in the adipose in R in relation to the control. In addition, we found increased liver and serum TAG, along with reduced apoB protein expression and IL-6 and IL-10 levels in the of R in relation to the control and trained groups. Conclusion: In conclusion, we have shown that increases in pro-inflammatory cytokines in the adipose tissue after an overtraining protocol may be mediated via TLR-4 and NF-kBp65 signalling, leading to an inflammatory state in this tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydroquinone (HQ) is an environmental contaminant which causes immune toxicity. In this study, the effects of exposure to low doses of HQ on neutrophil mobilization into the LPS-inflamed lung were investigated. Male Swiss mice were exposed to aerosolized vehicle (control) or 12.5, 25 or 50 ppm HQ (1 h/day for 5 days). One hour later, oxidative burst, cell cycle. DNA fragmentation and adhesion molecules expressions in circulating neutrophils were determined by flow cytometry, and plasma malondialdehyde (MDA) levels were measured by HPLC. Also, 1 h later the last exposures, inflammation was induced by LPS inhalation (0.1 mg/ml/10 min) and 3 h later, the numbers of leukocytes in peripheral blood and in the bronchoalveolar lavage fluid (BALF) were determined using a Neubauer chamber and stained smears; adhesion molecules expressed on lung microvessel endothelial cells were quantified by immunohistochemistry; myeloperoxidase (MPO) activity was measured in the lung tissue by colorimetric assay; and cytokines in the BALF were determined by ELISA. In vivo HQ exposure augmented plasma MDA levels and oxidative activity of neutrophils, but did not cause alterations in cell cycle and DNA fragmentation. Under these conditions, the number of circulating leukocytes was not altered, but HQ exposure reduced LPS-induced neutrophil migration into the alveolar space, as these cells remained in the lung tissue. The impaired neutrophil migration into BALF may not be dependent on reduced cytokines secretions in the BALF and lung endothelial adhesion molecules expressions. However, HQ exposure increased the expression of beta(2) and beta(3) integrins and platelet-endothelial cell adhesion molecule-1 (PECAM-1) in neutrophils, which were not further enhanced by fMLP in vitro stimulation, indicating that HQ exposure activates circulating neutrophils, impairing further stimulatory responses. Therefore, it has been shown, for the first time, that neutrophils are target of lower levels of in vivo HQ exposure, which may be considered in host defense in infectious diseases. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proteinase-activated receptor 2 (PAR(2)) is a putative therapeutic target for arthritis. We hypothesized that the early pro-inflammatory effects secondary to its activation in the temporomandibular joint (TMJ) are mediated by neurogenic mechanisms. Immunofluorescence analysis revealed a high degree of neurons expressing PAR(2) in retrogradely labeled trigeminal ganglion neurons. Furthermore, PAR(2) immunoreactivity was observed in the lining layer of the TMJ, co-localizing with the neuronal marker PGP9.5 and substance-P-containing peripheral sensory nerve fibers. The intra-articular injection of PAR(2) agonists into the TMJ triggered a dose-dependent increase in plasma extravasation, neutrophil influx, and induction of mechanical allodynia. The pharmacological blockade of natural killer 1 (NK(1)) receptors abolished PAR(2)-induced plasma extravasation and inhibited neutrophil influx and mechanical allodynia. We conclude that PAR(2) activation is proinflammatory in the TMJ, through a neurogenic mechanism involving NK(1) receptors. This suggests that PAR(2) is an important component of innate neuro-immune response in the rat TMJ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intestinal ischemia-reperfusion (I/R) injury may cause acute systemic and lung inflammation. Here, we revisited the role of TNF-alpha in an intestinal I/R model in mice, showing that this cytokine is not required for the local and remote inflammatory response upon intestinal I/R injury using neutralizing TNF-alpha antibodies and TNF ligand-deficient mice. We demonstrate increased neutrophil recruitment in the lung as assessed by myeloperoxidase activity and augmented IL-6, granulocyte colony-stimulating factor, and KC levels, whereas TNF-alpha levels in serum were not increased and only minimally elevated in intestine and lung upon intestinal I/R injury. Importantly, TNF-alpha antibody neutralization neither diminished neutrophil recruitment nor any of the cytokines and chemokines evaluated. In addition, the inflammatory response was not abrogated in TNF and TNF receptors 1 and 2-deficient mice. However, in view of the damage on the intestinal barrier upon intestinal I/R with systemic bacterial translocation, we asked whether Toll-like receptor (TLR) activation is driving the inflammatory response. In fact, the inflammatory lung response is dramatically reduced in TLR2/4-deficient mice, confirming an important role of TLR receptor signaling causing the inflammatory lung response. In conclusion, endogenous TNF-alpha is not or minimally elevated and plays no role as a mediator for the inflammatory response upon ischemic tissue injury. By contrast, TLR2/4 signaling induces an orchestrated cytokine/chemokine response leading to local and remote pulmonary inflammation, and therefore disruption of TLR signaling may represent an alternative therapeutic target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to air pollutants such as formaldehyde (FA) leads to inflammation, oxidative stress and immune-modulation in the airways and is associated with airway inflammatory disorders such as asthma. The purpose of our study was to investigate the effects of exposure to FA on the allergic lung inflammation. The hypothesized link between reactive oxygen species and the effects of FA was also studied. To do so, male Wistar rats were exposed to FA inhalation (1%, 90 min daily) for 3 days. and subsequently sensitized with ovalbumin (OVA)-alum by subcutaneous route One week later the rats received another OVA-alum injection by the same route (booster). Two weeks later the rats were challenged with aerosolized OVA. The OVA challenge of rats upon FA exposure induced an elevated release of LTB(4). TXB(2), IL-1 beta, IL-6 and VEGF in lung cells, increased phagocytosis and lung vascular permeability, whereas the cell recruitment into lung was reduced. FA inhalation induced the oxidative burst and the nitration of proteins in the lung Vitamins C, E and apocynin reduced the levels of LTB(4) in BAL-cultured cells of the FA and FA/OVA groups, but Increased the cell influx into the lung of the FA/OVA rats. In OVA-challenged rats, the exposure to FA was associated to a reduced lung endothelial cells expression of intercellular cell adhesion molecule 1 (ICAM-1) In conclusion, our findings suggest that FA down regulate the cellular migration into the lungs after an allergic challenge and increase the ability of resident lung cells likely macrophages to generate inflammatory mediators, explaining the increased lung vascular permeability Our data are indicative that the actions of FA involve mechanisms related to endothelium-leukocyte interactions and oxidative stress, as far as the deleterious effects of this air pollutant on airways are concerned. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporomandibular disorders represent one of the major challenges in dentistry therapeutics. This study was undertaken to evaluate the time course of carrageenan-induced inflammation in the rat temporomandibular joint (TMJ) and to investigate the role of tachykinin NK(1) receptors. Inflammation was induced by a single intra-articular (i.art.) injection of carrageenan into the left TMJ (control group received sterile saline). Inflammatory parameters such as plasma extravasation, leukocyte influx and mechanical allodynia (measured as the head-withdrawal force threshold) and TNF alpha and IL-1 beta concentrations were measured in the TMJ lavages at selected time-points. The carrageenan-induced responses were also evaluated after treatment with the NK(1) receptor antagonist SR140333. The i.art. injection of carrageenan into the TMJ caused a time-dependent plasma extravasation associated with mechanical allodynia, and a marked neutrophil accumulation between 4 and 24 h. Treatment with SR140333 substantially inhibited the increase in plasma extravasation and leukocyte influx at 4 and 24 h, as well as the production of TNF alpha and IL-1 beta into the joint cavity, but failed to affect changes in head-withdrawal threshold. The results obtained from the present TMJ-arthritis model provide, for the first time, information regarding the time course of this experimental inflammatory process. In addition, our data show that peripheral NK(1) receptors mediate the production of both TNF alpha and IL-1 beta in the TMJ as well as some of the inflammatory signs, such as plasma extravasation and leukocyte influx, but not the nociceptive component. 2008 European Federation of Chapters of the International Association for the Study of Pain. Published by Elsevier Ltd. All rights reserved.