950 resultados para Infectivity of eggs
Resumo:
The aim of the present study was to investigate the relative importance of flooding- and confinement-related environmentalfeatures in explaining macroinvertebrate trait structure and diversity in a pool of wetlands located in a Mediterranean riverfloodplain. To test hypothesized trait-environment relationships, we employed a recently implemented statistical procedure, thefourth-corner method. We found that flooding-related variables, mainly pH and turbidity, were related to traits that confer an abilityof the organism to resist flooding (e.g., small body-shape, protection of eggs) or recuperate faster after flooding (e.g., short life-span, asexual reproduction). In contrast, confinement-related variables, mainly temperature and organic matter, enhanced traits that allow organisms to interact and compete with other organisms (e.g., large size, sexual reproduction) and to efficiently use habitat and resources (e.g., diverse locomotion and feeding strategies). These results are in agreement with predictions made under the River Habitat Templet for lotic ecosystems, and demonstrate the ability of the fourth-corner method to test hypothesis that posit traitenvironment relationships. Trait diversity was slightly higher in flooded than in confined sites, whereas trait richness was not significantly different. This suggests that although trait structure may change in response to the main environmental factors, as evidenced by the fourth-corner method, the number of life-history strategies needed to persist in the face of such constraints remains more or less constant; only their relative dominance differs
Resumo:
Adults of Cyclocephala distincta are flower visitors of Neotropical palms (Arecaceae) and commonly found in the Atlantic Forest of Pernambuco, Brazil. Males and females were collected in the wild and subjected to captive rearing and breeding. The egg hatching rate, the life cycle, longevity of immatures and adults, and oviposition parameters in captivity were analyzed. The average duration of the life cycle of C. distinctawas 108.2 days (n = 45). The egg stage lasted on average 10.9 days, and the egg-hatching rate was 73.9%. The immature stage lasted on average 93.4 days. The larvae stage exhibited negative phototaxis, and the size of their head capsules increased at a constant rate of 1.6 between instars, following Dyar's rule. The average duration of the first instar was 24.8 days (n = 88), whereas the second and third instars lasted for 17.2 (n = 76) and 40.4 (n = 74) days respectively, and survival rates were 21.6%, 86.4% and 97.4%. The pre-pupal stage was recorded, and pupal chambers were built before pupation. The average number of eggs laid per female was 15.5, the total reproductive period lasted for 3.3 days, and the total fertility was 81.2%. Adults that emerged in captivity exhibited an average longevity of 18.9 days. Adult C. distincta exhibited thanatosis behavior upon manipulation, a strategy observed for the first time in Cyclocephala.
Resumo:
Nyssomyia whitmani (Antunes and Coutinho, 1939) has been considered as a complex of cryptic species, and some of the populations of this complex plays an important role in the transmission of Leishmania spp. in Brazil. The present study reports the biological aspects concerning the productivity out of eggs and the development time of the descendants of females obtained in Dourados municipality, Mato Grosso do Sul state. The females were captured with modified electric aspirators, fed in hamsters and further individualized in containers for breeding. At the insectary, temperature and relative humidity were maintained on average of 24.5 °C and 67.3%, respectively. From 944 females 3737 eggs were obtained, 748 (20.0%) evolved to the stage of larvae, and 93 (12.4%) of these reached adult stage. The life cycle lasted 80.6 days and the last larval instar was the longest. The use of a higher protein diet revealed a significant improvement in larval development.
Resumo:
Mitochondria have a fundamental role in the transduction of energy from food into ATP. The coupling between food oxidation and ATP production is never perfect, but may nevertheless be of evolutionary significance. The 'uncoupling to survive' hypothesis suggests that 'mild' mitochondrial uncoupling evolved as a protective mechanism against the excessive production of damaging reactive oxygen species (ROS). Because resource allocation and ROS production are thought to shape animal life histories, alternative life-history trajectories might be driven by individual variation in the degree of mitochondrial uncoupling. We tested this hypothesis in a small bird species, the zebra finch (Taeniopygia guttata), by treating adults with the artificial mitochondrial uncoupler 2,4-dinitrophenol (DNP) over a 32-month period. In agreement with our expectations, the uncoupling treatment increased metabolic rate. However, we found no evidence that treated birds enjoyed lower oxidative stress levels or greater survival rates, in contrast to previous results in other taxa. In vitro experiments revealed lower sensitivity of ROS production to DNP in mitochondria isolated from skeletal muscles of zebra finch than mouse. In addition, we found significant reductions in the number of eggs laid and in the inflammatory immune response in treated birds. Altogether, our data suggest that the 'uncoupling to survive' hypothesis may not be applicable for zebra finches, presumably because of lower effects of mitochondrial uncoupling on mitochondrial ROS production in birds than in mammals. Nevertheless, mitochondrial uncoupling appeared to be a potential life-history regulator of traits such as fecundity and immunity at adulthood, even with food supplied ad libitum.
Resumo:
Animal societies vary in the number of breeders per group, which affects many socially and ecologically relevant traits. In several social insect species, including our study species Formica selysi, the presence of either one or multiple reproducing females per colony is generally associated with differences in a suite of traits such as the body size of individuals. However, the proximate mechanisms and ontogenetic processes generating such differences between social structures are poorly known. Here, we cross-fostered eggs originating from single-queen (= monogynous) or multiple-queen (= polygynous) colonies into experimental groups of workers from each social structure to investigate whether differences in offspring survival, development time and body size are shaped by the genotype and/or prefoster maternal effects present in the eggs, or by the social origin of the rearing workers. Eggs produced by polygynous queens were more likely to survive to adulthood than eggs from monogynous queens, regardless of the social origin of the rearing workers. However, brood from monogynous queens grew faster than brood from polygynous queens. The social origin of the rearing workers influenced the probability of brood survival, with workers from monogynous colonies rearing more brood to adulthood than workers from polygynous colonies. The social origin of eggs or rearing workers had no significant effect on the head size of the resulting workers in our standardized laboratory conditions. Overall, the social backgrounds of the parents and of the rearing workers appear to shape distinct survival and developmental traits of ant brood.
Resumo:
Arcelin is a seed protein found in wild beans (Phaseolus vulgaris) which gives resistance to Mexican bean weevil, Zabrotes subfasciatus (Boheman 1833) (Coleoptera: Bruchidae). Studies were carried out with the objective of estimating the effect of four alleles of protein arcelin (Arc1, Arc2, Arc3 and Arc4) on the biology of Z. subfasciatus. The experiment was carried out in laboratory at Embrapa-Centro Nacional de Pesquisa de Arroz e Feijão, in Santo Antônio de Goiás, GO, Brazil, under non controlled conditions. The highest levels of antibiosis to Z. subfasciatus were observed in Arc1, with reduction in the number of eggs, number of emerged adults, adults longevity. In the line Arc2 only reduction in the number of emerged adults was observed. The lines Arc3 and Arc4 showed low efficiency on the reduction of progeny of Z. subfasciatus and effects in the longevity and egg-adult cycle were not detected. Insect sexual ratio was not altered by the presence of Arc1, Arc2, Arc3 and Arc4 in the seeds.
Resumo:
Introduction Societies of ants, bees, wasps and termites dominate many terrestrial ecosystems (Wilson 1971). Their evolutionary and ecological success is based upon the regulation of internal conflicts (e.g. Ratnieks et al. 2006), control of diseases (e.g. Schmid-Hempel 1998) and individual skills and collective intelligence in resource acquisition, nest building and defence (e.g. Camazine 2001). Individuals in social species can pass on their genes not only directly trough their own offspring, but also indirectly by favouring the reproduction of relatives. The inclusive fitness theory of Hamilton (1963; 1964) provides a powerful explanation for the evolution of reproductive altruism and cooperation in groups with related individuals. The same theory also led to the realization that insect societies are subject to internal conflicts over reproduction. Relatedness of less-than-one is not sufficient to eliminate all incentive for individual selfishness. This would indeed require a relatedness of one, as found among cells of an organism (Hardin 1968; Keller 1999). The challenge for evolutionary biology is to understand how groups can prevent or reduce the selfish exploitation of resources by group members, and how societies with low relatedness are maintained. In social insects the evolutionary shift from single- to multiple queens colonies modified the relatedness structure, the dispersal, and the mode of colony founding (e.g. (Crozier & Pamilo 1996). In ants, the most common, and presumably ancestral mode of reproduction is the emission of winged males and females, which found a new colony independently after mating and dispersal flights (Hölldobler & Wilson 1990). The alternative reproductive tactic for ant queens in multiple-queen colonies (polygyne) is to seek to be re-accepted in their natal colonies, where they may remain as additional reproductives or subsequently disperse on foot with part of the colony (budding) (Bourke & Franks 1995; Crozier & Pamilo 1996; Hölldobler & Wilson 1990). Such ant colonies can contain up to several hundred reproductive queens with an even more numerous workforce (Cherix 1980; Cherix 1983). As a consequence in polygynous ants the relatedness among nestmates is very low, and workers raise brood of queens to which they are only distantly related (Crozier & Pamilo 1996; Queller & Strassmann 1998). Therefore workers could increase their inclusive fitness by preferentially caring for their closest relatives and discriminate against less related or foreign individuals (Keller 1997; Queller & Strassmann 2002; Tarpy et al. 2004). However, the bulk of the evidence suggests that social insects do not behave nepotistically, probably because of the costs entailed by decreased colony efficiency or discrimination errors (Keller 1997). Recently, the consensus that nepotistic behaviour does not occur in insect colonies was challenged by a study in the ant Formica fusca (Hannonen & Sundström 2003b) showing that the reproductive share of queens more closely related to workers increases during brood development. However, this pattern can be explained either by nepotism with workers preferentially rearing the brood of more closely related queens or intrinsic differences in the viability of eggs laid by queens. In the first chapter, we designed an experiment to disentangle nepotism and differences in brood viability. We tested if workers prefer to rear their kin when given the choice between highly related and unrelated brood in the ant F. exsecta. We also looked for differences in egg viability among queens and simulated if such differences in egg viability may mistakenly lead to the conclusion that workers behave nepotistically. The acceptance of queens in polygnous ants raises the question whether the varying degree of relatedness affects their share in reproduction. In such colonies workers should favour nestmate queens over foreign queens. Numerous studies have investigated reproductive skew and partitioning of reproduction among queens (Bourke et al. 1997; Fournier et al. 2004; Fournier & Keller 2001; Hammond et al. 2006; Hannonen & Sundström 2003a; Heinze et al. 2001; Kümmerli & Keller 2007; Langer et al. 2004; Pamilo & Seppä 1994; Ross 1988; Ross 1993; Rüppell et al. 2002), yet almost no information is available on whether differences among queens in their relatedness to other colony members affects their share in reproduction. Such data are necessary to compare the relative reproductive success of dispersing and non-dispersing individuals. Moreover, information on whether there is a difference in reproductive success between resident and dispersing queens is also important for our understanding of the genetic structure of ant colonies and the dynamics of within group conflicts. In chapter two, we created single-queen colonies and then introduced a foreign queens originating from another colony kept under similar conditions in order to estimate the rate of queen acceptance into foreign established colonies, and to quantify the reproductive share of resident and introduced queens. An increasing number of studies have investigated the discrimination ability between ant workers (e.g. Holzer et al. 2006; Pedersen et al. 2006), but few have addressed the recognition and discrimination behaviour of workers towards reproductive individuals entering colonies (Bennett 1988; Brown et al. 2003; Evans 1996; Fortelius et al. 1993; Kikuchi et al. 2007; Rosengren & Pamilo 1986; Stuart et al. 1993; Sundström 1997; Vásquez & Silverman in press). These studies are important, because accepting new queens will generally have a large impact on colony kin structure and inclusive fitness of workers (Heinze & Keller 2000). In chapter three, we examined whether resident workers reject young foreign queens that enter into their nest. We introduced mated queens into their natal nest, a foreign-female producing nest, or a foreign male-producing nest and measured their survival. In addition, we also introduced young virgin and mated queens into their natal nest to examine whether the mating status of the queens influences their survival and acceptance by workers. On top of polgyny, some ant species have evolved an extraordinary social organization called 'unicoloniality' (Hölldobler & Wilson 1977; Pedersen et al. 2006). In unicolonial ants, intercolony borders are absent and workers and queens mix among the physically separated nests, such that nests form one large supercolony. Super-colonies can become very large, so that direct cooperative interactions are impossible between individuals of distant nests. Unicoloniality is an evolutionary paradox and a potential problem for kin selection theory because the mixing of queens and workers between nests leads to extremely low relatedness among nestmates (Bourke & Franks 1995; Crozier & Pamilo 1996; Keller 1995). A better understanding of the evolution and maintenance of unicoloniality requests detailed information on the discrimination behavior, dispersal, population structure, and the scale of competition. Cryptic genetic population structure may provide important information on the relevant scale to be considered when measuring relatedness and the role of kin selection. Theoretical studies have shown that relatedness should be measured at the level of the `economic neighborhood', which is the scale at which intraspecific competition generally takes place (Griffin & West 2002; Kelly 1994; Queller 1994; Taylor 1992). In chapter four, we conducted alarge-scale study to determine whether the unicolonial ant Formica paralugubris forms populations that are organised in discrete supercolonies or whether there is a continuous gradation in the level of aggression that may correlate with genetic isolation by distance and/or spatial distance between nests. In chapter five, we investigated the fine-scale population structure in three populations of F. paralugubris. We have developed mitochondria) markers, which together with the nuclear markers allowed us to detect cryptic genetic clusters of nests, to obtain more precise information on the genetic differentiation within populations, and to separate male and female gene flow. These new data provide important information on the scale to be considered when measuring relatedness in native unicolonial populations.
Resumo:
The objective of this research was to evaluate the effect of the insect resistant soybean genotype IAC 17 on reproductive characteristics of Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) females compared to the soybean insect susceptible genotype UFV 16. Treatments were: T1) females of P. nigrispinus fed on plants of the UFV 16 and Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) caterpillars reared on leaves of this variety; T2) females of P. nigrispinus fed on plants of the IAC 17 and A. gemmatalis caterpillars reared on leaves of this variety. Longevity of females, pre-oviposition, oviposition and pos-oviposition periods, number of eggs and egg masses/female, egg weight, interval between egg mass laying, number of eggs/egg mass, percentage of nymphs, number of nymphs/female and total number of prey killed/female of P. nigrispinus were evaluated. Most of the characteristics evaluated showed similar results between treatments, but the oviposition period was longer for females reared on the resistant genotype than on the susceptible one and the percentage of total females that laid eggs was lower on the IAC 17. Also, the resistant genotype caused higher mortality of P. nigrispinus females at the beginning of its adult stage and egg production by females of this predator was better spread along its adult stage with this resistant genotype. On the other hand, results suggest no effect of the resistant genotype on the offspring of this predator.
Resumo:
The objective of this study was to determine the effects of weather, predators and parasitoids, canopy height and plant age, leaf chemical composition, levels of leaf N and K and leaf trichomes on the intensity of Bemisia tabaci attack on Solanum melongena. A higher density of nymph and whitefly adults was recorded at the base and medium of the plant compared to the apex. A higher number of eggs was observed on the medium part than on the apical and base part of the plants dossel. An increase in the density of whitefly is associated with an increase in temperature.
Resumo:
In recent years, a number of zoonotic flaviviruses have emerged worldwide, and wild birds serve as their major reservoirs. Epidemiological surveys of bird populations at various geographical scales can clarify key aspects of the eco-epidemiology of these viruses. In this study, we aimed at exploring the presence of flaviviruses in the western Mediterranean by sampling breeding populations of the yellow-legged gull (Larus michahellis), a widely distributed, anthropophilic, and abundant seabird species. For 3 years, we sampled eggs from 19 breeding colonies in Spain, France, Algeria, and Tunisia. First, ELISAs were used to determine if the eggs contained antibodies against flaviviruses. Second, neutralization assays were used to identify the specific flaviviruses present. Finally, for colonies in which ELISA-positive eggs had been found, chick serum samples and potential vectors, culicid mosquitoes and soft ticks (Ornithodoros maritimus), were collected and analyzed using serology and PCR, respectively. The prevalence of flavivirus-specific antibodies in eggs was highly spatially heterogeneous. In northeastern Spain, on the Medes Islands and in the nearby village of L'Escala, 56% of eggs had antibodies against the flavivirus envelope protein, but were negative for neutralizing antibodies against three common flaviviruses: West Nile, Usutu, and tick-borne encephalitis viruses. Furthermore, little evidence of past flavivirus exposure was obtained for the other colonies. A subset of the Ornithodoros ticks from Medes screened for flaviviral RNA tested positive for a virus whose NS5 gene was 95% similar to that of Meaban virus, a flavivirus previously isolated from ticks of Larus argentatus in western France. All ELISA-positive samples subsequently tested positive for Meaban virus neutralizing antibodies. This study shows that gulls in the western Mediterranean Basin are exposed to a tick-borne Meaban-like virus, which underscores the need of exploring the spatial and temporal distribution of this flavivirus as well as its potential pathogenicity for animals and humans.
Resumo:
The objective of this work was to determine the potential of five species of Scelionidae wasps - Telenomus podisi, Trissolcus basalis, Trissolcus urichi, Trissolcus teretis and Trissolcus brochymenae - as natural enemies of the neotropical stink bug Dichelops melacanthus, and to determine if the presence of eggs of other stink bug species influences the parasitism and development of the parasitoids. Two kinds of experiments were done in laboratory: without choice of hosts (eggs of D. melacanthus) and with choice (eggs of D. melacanthus and of Euschistus heros). Biological parameters, including proportion of parasitism, immature survivorship, progeny sex ratio, immature stage development period, and host preference were recorded. All the evaluated parasitoids can parasitize and develop on D. melacanthus eggs. The first choice of eggs did not influence the proportion of D. melacanthus eggs parasitized by Tr. basalis, Tr. teretis or Tr. brochymenae. However, D. melacanthus eggs as the first choice of Te. podisi and Tr. urichi increased, respectively, 9 and 14 times the chance for parasitism on eggs of this species. Behavioral and ecological aspects of parasitoids should be considered prior to their use in biological control programs.
Resumo:
The objective of this work was to determine the inheritance of resistance by antixenosis in tomato plants (Lycopersicon esculentum) to tomato leafminer [Tuta absoluta (Lepidoptera: Gelechiidae)]. Evaluations were performed for tomato plants of the generations P1, P2, F1, F2, RC1 and RC2. The measured characteristic in the parents, BGH-1497 (P2 male) and 'Santa Clara' (P1 female), and in the F1, F2, RC1 and RC2 generations was the number of eggs per plant. This number was converted to the oviposition nonpreference index. The inheritance of antixenosis resistance of genotype BGH-1497 is ruled by a gene of greater effect and polygenes in epistatic interactions, with a phenotypic proportion of 13:3 between susceptible and resistant genotypes, respectively.
Resumo:
The objective of this work was to evaluate the development, survival, reproductive capacity, and longevity of the Asian ladybug Harmonia axyridis in comparison with Cycloneda sanguinea and Hippodamia convergens. Coccinellid larvae and adults were fed daily with Schizaphis graminum. Ten couples of each species were isolated for evaluation of the adult phase. The duration of the larval stage of H. axyridis is the longest (10.2 days) and its adults are the heaviest (29.7 mg) compared with C. sanguinea and H. convergens. The three species showed similar percentages of survival during the developmental stages. An average of 82% of C. sanguinea, H. axyridis, and H. convergens larvae reached adulthood, which indicates that temperature (25°C) and the offered prey are favorable to coccinellid development. Harmonia axyridis produces a higher total number of eggs per female (1,029.2) than the other evaluated species. However, H. axyridis, which lives for an average of 147.2 days, does not show a significantly greater longevity than C. sanguinea (87.2 days) and H. convergens (134.3 days).
Resumo:
The sublethal effect of extracts of Azadirachta indica on Ceratitis capitata was evaluated. Two pairs of flies were treated in plastic tubes with cotton placed in plastic cages. An artificial diet (hydrolyzed protein + sugar) was provided ad libitum. The extracts affected significantly the longevity of C. capitata. The pre-oviposition period were not significantly affected by the extracts. The A. indica branches extracted with dichloromethane (888 ppm) affected significantly the fecundity and fertility, reducing the number of eggs laid to approximately 80 % and the egg hatching by 30 % at the 8th day. Therefore, the neem branches extracted with dichloromethane affected the reproduction of C. capitata.
Resumo:
The effect of Heterodera glycines on photosynthesis, leaf area and yield of soybean (Glycine max) was studied in two experiments carried out under greenhouse condition. Soybean seeds were sown in 1.5 l (Experiment 1) or 5.0 l (Experiment 2) clay pots filled with a mixture of field soil + sand (1:1) sterilized with methyl bromide. Eight days after sowing, seedlings were thinned to one per pot, and one day later inoculated with 0; 1.200; 3.600; 10.800; 32.400 or 97.200 J2 juveniles of H. glycines. Experiment 1 was carried out during the first 45 days of the inoculation while Experiment 2 was conducted during the whole cycle of the crop. Measurements of photosynthetic rate, stomatic conductance, chlorophyll fluorescence, leaf color, leaf area, and chlorophyll leaf content were taken at ten-day intervals throughout the experiments. Data on fresh root weight, top dry weight, grain yield, number of eggs/gram of roots, and nematode reproduction factor were obtained at the end of the trials. Each treatment was replicated ten times. There was a marked reduction in both photosynthetic rate and chlorophyll content, as well as an evident yellowing of the leaves of the infected plants. Even at the lowest Pi, the effects of H. glycines on the top dry weight or grain yield were quite severe. Despite the parasitism, soybean yield was highly correlated with the integrated leaf area and, accordingly, the use of this parameter was suggested for the design of potential damage prediction models that include physiological aspects of nematode-diseased plants.