970 resultados para Image space
Resumo:
A detailed analysis procedure is described for evaluating rates of volumetric change in brain structures based on structural magnetic resonance (MR) images. In this procedure, a series of image processing tools have been employed to address the problems encountered in measuring rates of change based on structural MR images. These tools include an algorithm for intensity non-uniforniity correction, a robust algorithm for three-dimensional image registration with sub-voxel precision and an algorithm for brain tissue segmentation. However, a unique feature in the procedure is the use of a fractional volume model that has been developed to provide a quantitative measure for the partial volume effect. With this model, the fractional constituent tissue volumes are evaluated for voxels at the tissue boundary that manifest partial volume effect, thus allowing tissue boundaries be defined at a sub-voxel level and in an automated fashion. Validation studies are presented on key algorithms including segmentation and registration. An overall assessment of the method is provided through the evaluation of the rates of brain atrophy in a group of normal elderly subjects for which the rate of brain atrophy due to normal aging is predictably small. An application of the method is given in Part 11 where the rates of brain atrophy in various brain regions are studied in relation to normal aging and Alzheimer's disease. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
We present global and regional rates of brain atrophy measured on serially acquired T1-weighted brain MR images for a group of Alzheimer's disease (AD) patients and age-matched normal control (NC) subjects using the analysis procedure described in Part I. Three rates of brain atrophy: the rate of atrophy in the cerebrum, the rate of lateral ventricular enlargement and the rate of atrophy in the region of temporal lobes, were evaluated for 14 AD patients and 14 age-matched NC subjects. All three rates showed significant differences between the two groups, However, the greatest separation of the two groups was obtained when the regional rates were combined. This application has demonstrated that rates of brain atrophy, especially in specific regions of the brain, based on MR images can provide sensitive measures for evaluating the progression of AD. These measures will be useful for the evaluation of therapeutic effects of novel therapies for AD. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
The diversity literature is replete with examples of poor outcomes in Culturally Heterogeneous Workgroups (CHWs) caused by relational difficulties. Although it is widely recognised that culture shapes people's interpretation of behavior and their style of interaction with others in the workplace, what is ill understood is what the specific conflict triggers of these conflicts are. In this paper, we argue that differences in cultural norms and views of physical and psychological space are major triggers of conflict in CHWs. Findings from a field study support the proposition that different viewpoints regarding the use of space, the inability to retreat from exposure to others, decreased interpersonal space, and privacy invasion moderate the relationship between cultural diversity in the workgroup and the type, frequency, and duration of conflict events in CHWs. The paper represents a first step in elucidating the role of space in cross-cultural interactions in the workplace and how space may be a potentially important conflict control mechanism for managers of culturally diverse workgroups.
Resumo:
The subject of this study was a typical, if in some respects well qualified, U.S. ambassadorial appointee for his time, the early twentieth century: an attorney, judge, and politician who served competently in his one diplomatic assignment, in Berlin, before returning to private life.—Ed.
Resumo:
Free-space optical interconnects (FSOIs), made up of dense arrays of vertical-cavity surface-emitting lasers, photodetectors and microlenses can be used for implementing high-speed and high-density communication links, and hence replace the inferior electrical interconnects. A major concern in the design of FSOIs is minimization of the optical channel cross talk arising from laser beam diffraction. In this article we introduce modifications to the mode expansion method of Tanaka et al. [IEEE Trans. Microwave Theory Tech. MTT-20, 749 (1972)] to make it an efficient tool for modelling and design of FSOIs in the presence of diffraction. We demonstrate that our modified mode expansion method has accuracy similar to the exact solution of the Huygens-Kirchhoff diffraction integral in cases of both weak and strong beam clipping, and that it is much more accurate than the existing approximations. The strength of the method is twofold: first, it is applicable in the region of pronounced diffraction (strong beam clipping) where all other approximations fail and, second, unlike the exact-solution method, it can be efficiently used for modelling diffraction on multiple apertures. These features make the mode expansion method useful for design and optimization of free-space architectures containing multiple optical elements inclusive of optical interconnects and optical clock distribution systems. (C) 2003 Optical Society of America.
Resumo:
Subtractive imaging in confocal fluorescence light microscopy is based on the subtraction of a suitably weighted widefield image from a confocal image. An approximation to a widefield image can be obtained by detection with an opened confocal pinhole. The subtraction of images enhances the resolution in-plane as well as along the optic axis. Due to the linearity of the approach, the effect of subtractive imaging in Fourier-space corresponds to a reduction of low spatial frequency contributions leading to a relative enhancement of the high frequencies. Along the direction of the optic axis this also results in an improved sectioning. Image processing can achieve a similar effect. However, a 3D volume dataset must be acquired and processed, yielding a result essentially identical to subtractive imaging but superior in signal-to-noise ratio. The latter can be increased further with the technique of weighted averaging in Fourier-space. A comparison of 2D and 3D experimental data analysed with subtractive imaging, the equivalent Fourier-space processing of the confocal data only, and Fourier-space weighted averaging is presented. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Atreladas a uma estética própria e “efeitos de verdade” (PELLEJERO, 2008), as videografias turísticas acabam por compor linguagens fartamente informativas sobre aquilo que se quer dizer sobre os lugares. Suas cenas são as apontadas para propagandear uma imagem a ser consumida, delas esperam-se o melhor ângulo a ser fotografado, experiências únicas e roteiros alternativos e naturais para se conhecer o lugar. Sendo assim, são as imagens turísticas, na atualidade, linguagens potentes para se entender as narrativas sobre os lugares, suas imaginações espaciais, bem como as construções de ficções sobre determinada realidade. Uma vez envolvidas as produções de ficções hegemônicas, os vídeos turísticos e as imaginações espaciais que temos deles podem promover modos cristalizados de se pensar o espaço; distanciando-se dos propósitos de entender o espaço a partir das suas conexões-desconexões e multiplicidade de trajetórias (MASSEY, 2008). Nesse contexto, essa pesquisa tem como objetivo principal discutir como os vídeos turísticos, em especial dois vídeos da atual campanha da Secretaria de Turismo do Espírito Santo, “Descubra o Espírito Santo”, apresentam uma imaginação espacial. Também seguem como interesse: refletir e analisar a política visual e a estética das videografias turísticas; entender e analisar a produção de uma ficção para construção e mobilização de uma imaginação espacial e estudar autores e produções videográficas que se dedicaram a pensar possibilidades outras de mobilizar e desterritorializar uma imaginação espacial e as estéticas videográficas.
Resumo:
In cameras with radial distortion, straight lines in space are in general mapped to curves in the image. Although epipolar geometry also gets distorted, there is a set of special epipolar lines that remain straight, namely those that go through the distortion center. By finding these straight epipolar lines in camera pairs we can obtain constraints on the distortion center(s) without any calibration object or plumbline assumptions in the scene. Although this holds for all radial distortion models we conceptually prove this idea using the division distortion model and the radial fundamental matrix which allow for a very simple closed form solution of the distortion center from two views (same distortion) or three views (different distortions). The non-iterative nature of our approach makes it immune to local minima and allows finding the distortion center also for cropped images or those where no good prior exists. Besides this, we give comprehensive relations between different undistortion models and discuss advantages and drawbacks.
Resumo:
Guimarães hosted the European Capital of Culture (ECOC) during the year of 2012. This study investigates the differences between Portuguese and foreign tourists regarding the main motivations to visit Guimarães and the retained perceived image of the destination. To achieve that purpose a survey was administered to 390 tourists that visited the city during the cultural event. The results show that tourists who visited Guimarães are relatively young, wealthy, employed and well educated. They are touring around the northern part of the country which includes an itinerary beginning in Porto, and extended to other important neighboring cities such as Braga or Viana do Castelo. The main motivations to visit the city, for both Portuguese and foreign tourists, are its historical heritage and the title of ECOC, the associated cultural events and celebrations that take place during 2012. However, these items were more valued by foreigners than Portuguese tourists. Using a factor analysis the tourists’ perceived attributes of Guimarães were described in four dimensions: “material heritage”, “intangible heritage”, “cultural performance”, and “sport and education”. Although foreigners and nationals perceived the tourism attributes of the city differently, the comparison of the mean scores of the four factors across Portuguese and foreigner tourists reveals that the most valued and least valued factors are common to both groups.
Resumo:
Protein aggregation became a widely accepted marker of many polyQ disorders, including Machado-Joseph disease (MJD), and is often used as readout for disease progression and development of therapeutic strategies. The lack of good platforms to rapidly quantify protein aggregates in a wide range of disease animal models prompted us to generate a novel image processing application that automatically identifies and quantifies the aggregates in a standardized and operator-independent manner. We propose here a novel image processing tool to quantify the protein aggregates in a Caenorhabditis elegans (C. elegans) model of MJD. Confocal mi-croscopy images were obtained from animals of different genetic conditions. The image processing application was developed using MeVisLab as a platform to pro-cess, analyse and visualize the images obtained from those animals. All segmenta-tion algorithms were based on intensity pixel levels.The quantification of area or numbers of aggregates per total body area, as well as the number of aggregates per animal were shown to be reliable and reproducible measures of protein aggrega-tion in C. elegans. The results obtained were consistent with the levels of aggrega-tion observed in the images. In conclusion, this novel imaging processing applica-tion allows the non-biased, reliable and high throughput quantification of protein aggregates in a C. elegans model of MJD, which may contribute to a significant improvement on the prognosis of treatment effectiveness for this group of disor-ders
Resumo:
Color model representation allows characterizing in a quantitative manner, any defined color spectrum of visible light, i.e. with a wavelength between 400nm and 700nm. To accomplish that, each model, or color space, is associated with a function that allows mapping the spectral power distribution of the visible electromagnetic radiation, in a space defined by a set of discrete values that quantify the color components composing the model. Some color spaces are sensitive to changes in lighting conditions. Others assure the preservation of certain chromatic features, remaining immune to these changes. Therefore, it becomes necessary to identify the strengths and weaknesses of each model in order to justify the adoption of color spaces in image processing and analysis techniques. This chapter will address the topic of digital imaging, main standards and formats. Next we will set the mathematical model of the image acquisition sensor response, which enables assessment of the various color spaces, with the aim of determining their invariance to illumination changes.
Resumo:
Image segmentation is an ubiquitous task in medical image analysis, which is required to estimate morphological or functional properties of given anatomical targets. While automatic processing is highly desirable, image segmentation remains to date a supervised process in daily clinical practice. Indeed, challenging data often requires user interaction to capture the required level of anatomical detail. To optimize the analysis of 3D images, the user should be able to efficiently interact with the result of any segmentation algorithm to correct any possible disagreement. Building on a previously developed real-time 3D segmentation algorithm, we propose in the present work an extension towards an interactive application where user information can be used online to steer the segmentation result. This enables a synergistic collaboration between the operator and the underlying segmentation algorithm, thus contributing to higher segmentation accuracy, while keeping total analysis time competitive. To this end, we formalize the user interaction paradigm using a geometrical approach, where the user input is mapped to a non-cartesian space while this information is used to drive the boundary towards the position provided by the user. Additionally, we propose a shape regularization term which improves the interaction with the segmented surface, thereby making the interactive segmentation process less cumbersome. The resulting algorithm offers competitive performance both in terms of segmentation accuracy, as well as in terms of total analysis time. This contributes to a more efficient use of the existing segmentation tools in daily clinical practice. Furthermore, it compares favorably to state-of-the-art interactive segmentation software based on a 3D livewire-based algorithm.
Resumo:
Background: Regulating mechanisms of branching morphogenesis of fetal lung rat explants have been an essential tool for molecular research. This work presents a new methodology to accurately quantify the epithelial, outer contour and peripheral airway buds of lung explants during cellular development from microscopic images. Methods: The outer contour was defined using an adaptive and multi-scale threshold algorithm whose level was automatically calculated based on an entropy maximization criterion. The inner lung epithelial was defined by a clustering procedure that groups small image regions according to the minimum description length principle and local statistical properties. Finally, the number of peripheral buds were counted as the skeleton branched ends from a skeletonized image of the lung inner epithelial. Results: The time for lung branching morphometric analysis was reduced in 98% in contrast to the manual method. Best results were obtained in the first two days of cellular development, with lesser standard deviations. Non-significant differences were found between the automatic and manual results in all culture days. Conclusions: The proposed method introduces a series of advantages related to its intuitive use and accuracy, making the technique suitable to images with different lightning characteristics and allowing a reliable comparison between different researchers.
Resumo:
Regulating mechanisms of branchingmorphogenesis of fetal lung rat explants have been an essential tool formolecular research.This work presents a new methodology to accurately quantify the epithelial, outer contour, and peripheral airway buds of lung explants during cellular development frommicroscopic images. Methods.Theouter contour was defined using an adaptive and multiscale threshold algorithm whose level was automatically calculated based on an entropy maximization criterion. The inner lung epithelium was defined by a clustering procedure that groups small image regions according to the minimum description length principle and local statistical properties. Finally, the number of peripheral buds was counted as the skeleton branched ends from a skeletonized image of the lung inner epithelia. Results. The time for lung branching morphometric analysis was reduced in 98% in contrast to themanualmethod. Best results were obtained in the first two days of cellular development, with lesser standard deviations. Nonsignificant differences were found between the automatic and manual results in all culture days. Conclusions. The proposed method introduces a series of advantages related to its intuitive use and accuracy, making the technique suitable to images with different lighting characteristics and allowing a reliable comparison between different researchers.