1000 resultados para Illinois. Department of Revenue
Resumo:
Description based on: 1989-1994.
Resumo:
"The Illinois Department of Natural Resources/Office of Water Resources (OWR) is cooperating with the Village of Davis Junction to construct a flood control project under the authority of the Flood Control Act of 1945, 615 ILCS 15 (1996 State Bar Edition)."--Leaf 1.
Resumo:
Title from cover.
Resumo:
As part of the Governor's effort to streamline State government through improvements in the efficiency and effectiveness of operations, Executive Order 2004-06 ("EO6") provided for the reorganization (consolidation) of the Department of Insurance, Office of Banks and Real Estate, Department of Professional Regulation and Department of Financial Institutions. Through EO6 the four predecessor Agencies were abolished and a single new agency, The Department of Financial and Professional Regulation (hereafter referred to as "IDFPR") was created. The purpose of the consolidation of the four regulatory agencies was to allow for certain economies of scale to be realized primarily within the executive management and administrative functions. Additionally, the consolidation would increases the effectiveness of operations through the integration of certain duplicative functions within the four predecessor agencies without the denegration of the frontline functions. Beginning on or about July 1, 2004, the IDFPR began consolidation activities focusing primarily on the administrative functions of Executive Management, Fiscal and Accounting, General Counsel, Human Resources, Information Technology and Other Administrative Services. The underlying premise of the reorganization was that all improvements could be accomplished without the denegration of the frontline functions of the predecessor agencies. Accordingly, all powers, duties, rights, responsibilities and functions of the predecessor agencies migrated to IDFPR and the reorganization activities commenced July 1, 2004.
Resumo:
Report year ends June 30.
Resumo:
This study was undertaken to determine the distribution and habitat requirements of many of the endangered and threatened plant species associated with the sand deposits of Illinois. Approximately 70 species of endangered and threatened plants are known to grow in these deposits. The habitat fidelity and natural community types were determined for 40 of these species that are restricted to these glacial drift sand habitats. Plant community types, associated species, moisture requirements, and other data concerning each of the plant species were determined by reviewing the pertinent literature, searching the Illinois Department of Natural Resources Natural Heritage Database, through discussions with botanists and natural heritage biologists, examination of herbarium specimens, and our studies of the vegetation of the Illinois sand deposits. Throughout the course of these studies, most of the nature preserves, state parks, and identified natural areas in the sand regions were visited on numerous occasions and vegetation surveys undertaken. The information presented in this paper could allow rare plant conservation in Illinois to become more proactive by encouraging the selection of sites where in situ conservation efforts could be conducted by state, local, and nongovernmental organizations.
Resumo:
Medullary thyroid carcinoma (MTC) originates in the thyroid parafollicular cells and represents 3-4% of the malignant neoplasms that affect this gland. Approximately 25% of these cases are hereditary due to activating mutations in the REarranged during Transfection (RET) proto-oncogene. The course of MTC is indolent, and survival rates depend on the tumor stage at diagnosis. The present article describes clinical evidence-based guidelines for the diagnosis, treatment, and follow-up of MTC. The aim of the consensus described herein, which was elaborated by Brazilian experts and sponsored by the Thyroid Department of the Brazilian Society of Endocrinology and Metabolism, was to discuss the diagnosis, treatment, and follow-up of individuals with MTC in accordance with the latest evidence reported in the literature. After clinical questions were elaborated, the available literature was initially surveyed for evidence in the MedLine-PubMed database, followed by the Embase and Scientific Electronic Library Online/Latin American and Caribbean Health Science Literature (SciELO/Lilacs) databases. The strength of evidence was assessed according to the Oxford classification of evidence levels, which is based on study design, and the best evidence available for each question was selected. Eleven questions corresponded to MTC diagnosis, 8 corresponded to its surgical treatment, and 13 corresponded to follow-up, for a total of 32 recommendations. The present article discusses the clinical and molecular diagnosis, initial surgical treatment, and postoperative management of MTC, as well as the therapeutic options for metastatic disease. MTC should be suspected in individuals who present with thyroid nodules and family histories of MTC, associations with pheochromocytoma and hyperparathyroidism, and/or typical phenotypic characteristics such as ganglioneuromatosis and Marfanoid habitus. Fine-needle nodule aspiration, serum calcitonin measurements, and anatomical-pathological examinations are useful for diagnostic confirmation. Surgery represents the only curative therapeutic strategy. The therapeutic options for metastatic disease remain limited and are restricted to disease control. Judicious postoperative assessments that focus on the identification of residual or recurrent disease are of paramount importance when defining the follow-up and later therapeutic management strategies.
Resumo:
OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries, in particular, from explosions. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel for its simplicity and sufficiency for practical engineering design problems. The code uses a finite-volume formulation of the unsteady Euler equations with a second order explicit Runge-Kutta Godonov (MUSCL) scheme. Gradients are calculated using a least-squares method with a minmod limiter. Flux solvers used are AUSM, AUSMDV and EFM. No fluid-structure coupling or chemical reactions are allowed, but gas models can be perfect gas and JWL or JWLB for the explosive products. This report also describes the code’s ‘octree’ mesh adaptive capability and point-inclusion query procedures for the VCE geometry engine. Finally, some space will also be devoted to describing code parallelization using the shared-memory OpenMP paradigm. The user manual to the code is to be found in the companion report 2007/13.
Resumo:
OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel as it is simple to code and sufficient for practical engineering design problems. This also makes the code much more ‘user-friendly’ than structured grid approaches as the gridding process is done automatically. The CFD methodology relies on a finite-volume formulation of the unsteady Euler equations and is solved using a standard explicit Godonov (MUSCL) scheme. Both octree-based adaptive mesh refinement and shared-memory parallel processing capability have also been incorporated. For further details on the theory behind the code, see the companion report 2007/12.