894 resultados para Illinois Wetland Monitoring and Assessment Program.
Resumo:
Within the Information Technology degree programme of the University of Reading, the students undertake a major project in their final year. The module is both a hurdle to an honours degree and significant in terms of assessment weighting. The two year history so far has shown that bad citation and plagiarism are issues, and in one case called for the due referral of a project report. In the light of experience to date, we are focusing firstly on plagiarism prevention, giving generic advice on report writing and citation practice, and secondly on detection. In the longer term, I believe we need to reflect on what capabilities we should be creating in our undergraduates and therefore what and how we should be assessing them.
Resumo:
During the past 15 years, a number of initiatives have been undertaken at national level to develop ocean forecasting systems operating at regional and/or global scales. The co-ordination between these efforts has been organized internationally through the Global Ocean Data Assimilation Experiment (GODAE). The French MERCATOR project is one of the leading participants in GODAE. The MERCATOR systems routinely assimilate a variety of observations such as multi-satellite altimeter data, sea-surface temperature and in situ temperature and salinity profiles, focusing on high-resolution scales of the ocean dynamics. The assimilation strategy in MERCATOR is based on a hierarchy of methods of increasing sophistication including optimal interpolation, Kalman filtering and variational methods, which are progressively deployed through the Syst`eme d’Assimilation MERCATOR (SAM) series. SAM-1 is based on a reduced-order optimal interpolation which can be operated using ‘altimetry-only’ or ‘multi-data’ set-ups; it relies on the concept of separability, assuming that the correlations can be separated into a product of horizontal and vertical contributions. The second release, SAM-2, is being developed to include new features from the singular evolutive extended Kalman (SEEK) filter, such as three-dimensional, multivariate error modes and adaptivity schemes. The third one, SAM-3, considers variational methods such as the incremental four-dimensional variational algorithm. Most operational forecasting systems evaluated during GODAE are based on least-squares statistical estimation assuming Gaussian errors. In the framework of the EU MERSEA (Marine EnviRonment and Security for the European Area) project, research is being conducted to prepare the next-generation operational ocean monitoring and forecasting systems. The research effort will explore nonlinear assimilation formulations to overcome limitations of the current systems. This paper provides an overview of the developments conducted in MERSEA with the SEEK filter, the Ensemble Kalman filter and the sequential importance re-sampling filter.
Resumo:
It is well established that crop production is inherently vulnerable to variations in the weather and climate. More recently the influence of vegetation on the state of the atmosphere has been recognized. The seasonal growth of crops can influence the atmosphere and have local impacts on the weather, which in turn affects the rate of seasonal crop growth and development. Considering the coupled nature of the crop-climate system, and the fact that a significant proportion of land is devoted to the cultivation of crops, important interactions may be missed when studying crops and the climate system in isolation, particularly in the context of land use and climate change. To represent the two-way interactions between seasonal crop growth and atmospheric variability, we integrate a crop model developed specifically to operate at large spatial scales (General Large Area Model for annual crops) into the land surface component of a global climate model (GCM; HadAM3). In the new coupled crop-climate model, the simulated environment (atmosphere and soil states) influences growth and development of the crop, while simultaneously the temporal variations in crop leaf area and height across its growing season alter the characteristics of the land surface that are important determinants of surface fluxes of heat and moisture, as well as other aspects of the land-surface hydrological cycle. The coupled model realistically simulates the seasonal growth of a summer annual crop in response to the GCM's simulated weather and climate. The model also reproduces the observed relationship between seasonal rainfall and crop yield. The integration of a large-scale single crop model into a GCM, as described here, represents a first step towards the development of fully coupled crop and climate models. Future development priorities and challenges related to coupling crop and climate models are discussed.
Resumo:
When Ian Wilson and Carlos Barahona of the Statistical Services Centre at the University of Reading were asked to review an evaluation of the effectiveness of an aid package in Malawi, they expected a simple enough task. But few things in the developing world are simple. Where aid for the poorest is concerned, is evidence collected and analysed with enough rigour to enable well-informed decisions to be made?
Resumo:
We are soon approaching the pervasive-era ofcomputing, where computers are embedded intoobjects and the environment in order to provide newservices to users. Significant levels of data arerequired in order for these services to function asintended, and it is this collection of data which werefer to as ubiquitous monitoring. Existing monitoringtechniques have often been known to cause undesirableeffects, and it is anticipated that ubiquitousmonitoring, with its increased coverage, will lead toincreases in their occurrence and impact. To date, theeffects of ubiquitous monitoring on human behaviourhave not been sufficiently investigated, furtherincreasing the risk of undesirable effects. We propose apreliminary model consisting of a series of factorsbelieved to influence human behavior and augmentedby the Theory of Planned Behaviour. This model mayallow us to understand, predict, and therefore preventany undesirable effects caused by ubiquitousmonitoring.
Resumo:
Between 8 and 40% of Parkinson disease (PD) patients will have visual hallucinations (VHs) during the course of their illness. Although cognitive impairment has been identified as a risk factor for hallucinations, more specific neuropsychological deficits underlying such phenomena have not been established. Research in psychopathology has converged to suggest that hallucinations are associated with confusion between internal representations of events and real events (i.e. impaired-source monitoring). We evaluated three groups: 17 Parkinson's patients with visual hallucinations, 20 Parkinson's patients without hallucinations and 20 age-matched controls, using tests of visual imagery, visual perception and memory, including tests of source monitoring and recollective experience. The study revealed that Parkinson's patients with hallucinations appear to have intact visual imagery processes and spatial perception. However, there were impairments in object perception and recognition memory, and poor recollection of the encoding episode in comparison to both non-hallucinating Parkinson's patients and healthy controls. Errors were especially likely to occur when encoding and retrieval cues were in different modalities. The findings raise the possibility that visual hallucinations in Parkinson's patients could stem from a combination of faulty perceptual processing of environmental stimuli, and less detailed recollection of experience combined with intact image generation. (C) 2002 Elsevier Science Ltd. All fights reserved.
Resumo:
Resource monitoring in distributed systems is required to understand the 'health' of the overall system and to help identify particular problems, such as dysfunctional hardware, a faulty, system or application software. Desirable characteristics for monitoring systems are the ability to connect to any number of different types of monitoring agents and to provide different views of the system, based on a client's particular preferences. This paper outlines and discusses the ongoing activities within the GridRM wide-area resource-monitoring project.
Resumo:
There is a growing concern in reducing greenhouse gas emissions all over the world. The U.K. has set 34% target reduction of emission before 2020 and 80% before 2050 compared to 1990 recently in Post Copenhagen Report on Climate Change. In practise, Life Cycle Cost (LCC) and Life Cycle Assessment (LCA) tools have been introduced to construction industry in order to achieve this such as. However, there is clear a disconnection between costs and environmental impacts over the life cycle of a built asset when using these two tools. Besides, the changes in Information and Communication Technologies (ICTs) lead to a change in the way information is represented, in particular, information is being fed more easily and distributed more quickly to different stakeholders by the use of tool such as the Building Information Modelling (BIM), with little consideration on incorporating LCC and LCA and their maximised usage within the BIM environment. The aim of this paper is to propose the development of a model-based LCC and LCA tool in order to provide sustainable building design decisions for clients, architects and quantity surveyors, by then an optimal investment decision can be made by studying the trade-off between costs and environmental impacts. An application framework is also proposed finally as the future work that shows how the proposed model can be incorporated into the BIM environment in practise.