920 resultados para ISOLATE
Resumo:
The objective of the present study was to establish a valid transformation method of Haemophilus parasuis, the causative agent of Glasser's disease in pigs, using a novel H. parasuis-Escherichia coli shuttle vector. A 4.2 kb endogenous plasmid pYC93 was extracted from an H. parasuis field isolate and completely sequenced. Analysis of pYC93 revealed a region approximately 800 bp showing high homology with the defined replication origin oriV of pLS88, a native plasmid identified in Haemophilus ducreyi. Based on the origin region of pYC93, E. coli cloning vector pBluescript SK(+) and the Tn903 derived kanamycin cassette, a shuttle vector pSHK4 was constructed by overlapping PCR strategy. When electroporation of the 15 H. parasuis serovar reference strains and one clinical isolate SH0165 with pSHK4 was performed, only one of these strains yielded transformants with an efficiency of 8.5 x 10(2) CFUhlg of DNA. Transformation efficiency was notably increased (1.3 x 10(5) CFU/mu g of DNA) with vector DNA reisolated from the homologous transformants. This demonstrated that restriction-modification systems were involved in the barrier to transformation of H. parasuis. By utilizing an in vitro DNA modification method with cell-free extracts of the host H. parasuis strains, 15 out of 16 strains were transformable. The novel shuttle vector pSHK4 and the established electrotransformation method constitute useful tools for the genetic manipulation of H. parasuis to gain a better understanding of the pathogen. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A 5-year-old Australian stock horse in Monto, Queensland, Australia, developed neurological signs and was euthanized after a 6-day course of illness. Histological examination of the brain and spinal cord revealed moderate to severe subacute, nonsuppurative encephalomyelitis. Sections of spinal cord stained positively in immunohistochemistry with a flavivirus-specific monoclonal antibody. Reverse transcription polymerase chain reaction assay targeting the envelope gene of flavivirus yielded positive results from brain, spinal cord, cerebrospinal fluid, and facial nerve. A flavivirus was isolated from the cerebrum and spinal cord. Nucleotide sequences obtained from amplicons from both tissues and virus isolated in cell culture were compared with those in GenBank and had 96-98% identity with Murray Valley encephalitis virus. The partial envelope gene sequence of the viral isolate clustered into genotype 1 and was most closely related to a previous Queensland isolate.
Resumo:
Basidiomycetous white-rot fungi are the only organisms that can efficiently decompose all the components of wood. Moreover, white-rot fungi possess the ability to mineralize recalcitrant lignin polymer with their extracellular, oxidative lignin-modifying enzymes (LMEs), i.e. laccase, lignin peroxidase (LiP), manganese peroxidase (MnP), and versatile peroxidase (VP). Within one white-rot fungal species LMEs are typically present as several isozymes encoded by multiple genes. This study focused on two effi cient lignin-degrading white-rot fungal species, Phlebia radiata and Dichomitus squalens. Molecular level knowledge of the LMEs of the Finnish isolate P. radiata FBCC43 (79, ATCC 64658) was complemented with cloning and characterization of a new laccase (Pr-lac2), two new LiP-encoding genes (Pr-lip1, Pr-lip4), and Pr-lip3 gene that has been previously described only at cDNAlevel. Also, two laccase-encoding genes (Ds-lac3, Ds-lac4) of D. squalens were cloned and characterized for the first time. Phylogenetic analysis revealed close evolutionary relationships between the P. radiata LiP isozymes. Distinct protein phylogeny for both P. radiata and D. squalens laccases suggested different physiological functions for the corresponding enzymes. Supplementation of P. radiata liquid culture medium with excess Cu2+ notably increased laccase activity and good fungal growth was achieved in complex medium rich with organic nitrogen. Wood is the natural substrate of lignin-degrading white-rot fungi, supporting production of enzymes and metabolites needed for fungal growth and the breakdown of lignocellulose. In this work, emphasis was on solid-state wood or wood-containing cultures that mimic the natural growth conditions of white-rot fungi. Transcript analyses showed that wood promoted expression of all the presently known LME-encoding genes of P. radiata and laccase-encoding genes of D. squalens. Expression of the studied individual LME-encoding genes of P. radiata and D. squalens was unequal in transcript quantities and apparently time-dependent, thus suggesting the importance of several distinct LMEs within one fungal species. In addition to LMEs, white-rot fungi secrete other compounds that are important in decomposition of wood and lignin. One of these compounds is oxalic acid, which is a common metabolite of wood-rotting fungi. Fungi produce also oxalic-acid degrading enzymes of which the most widespread is oxalate decarboxylase (ODC). However, the role of ODC in fungi is still ambiguous with propositions from regulation of intra and extracellular oxalic acid levels to a function in primary growth and concomitant production of ATP. In this study, intracellular ODC activity was detected in four white-rot fungal species, and D. squalens showed the highest ODC activity upon exposure to oxalic acid. Oxalic acid was the most common organic acid secreted by the ODC-positive white-rot fungi and the only organic acid detected in wood cultures. The ODC-encoding gene Ds-odc was cloned from two strains of D. squalens showing the first characterization of an odc-gene from a white-rot polypore species. Biochemical properties of the D. squalens ODC resembled those described for other basidiomycete ODCs. However, the translated amino acid sequence of Ds-odc has a novel N-terminal primary structure with a repetitive Ala-Ser-rich region of ca 60 amino acid residues in length. Expression of the Ds-odc transcripts suggested a constitutive metabolic role for the corresponding ODC enzyme. According to the results, it is proposed that ODC may have an essential implication for the growth and basic metabolism of wood-decaying fungi.
Resumo:
Species of the genera Rhodococcus, Gordonia and Mycobacterium are known as degraders of recalcitrant pollutants. These bacteria are good survivors in harsh environments. Due to such properties these organisms are able to occupy a wide range of environmental niches. The members of these taxa have been suggested as tools for biotechnical applications such as bioremediation and biosynthesis. At the same time several of the species are known as opportunistic human pathogens. Therefore, the detailed characterization of any isolate that has potential for biotechnological applications is very important. This thesis deals with several corynebacterial strains originating from different polluted environments: soil, water-damaged indoor walls, and drinking water distribution systems. A polyphasic taxonomic approach was applied for characterization of the isolates. We found that the strains degrading monoaromatic compounds belonged to Rhodococcus opacus, a species that has not been associated with any health problem. The taxonomic position of strain B293, used for many years in degradation research under different names, was clarified. We assigned it to the species Gordonia polyisoprenivorans. This species is classified under European Biohazard grouping 1, meaning that it is not considered a health hazard for humans. However, there are reports of catheter-associated bacteraemia caused by G. polyisoprenivorans. Our results suggested that the ability of the organism to grow on phthalate esters, used as softeners in medical plastics, may be associated with the colonization of catheters and other devices. In this thesis Mycobacterium lentiflavum, a new emerging opportunistic human pathogen, was isolated from biofilms growing in public drinking water distribution systems. Our report on isolation of M. lentiflavum from water supplies is the second report on this species from drinking water systems, which may thus constitute a reservoir of M. lentiflavum. Automated riboprinting was evaluated for its applicability in rapidly identifying environmental mycobacteria. The technique was found useful in the characterization of several species of rapidly and slowly growing environmental mycobacteria. The second aspect of this thesis refers to characterization of the degradation and tolerance power of several R. opacus, M. murale and G. polyisoprenivorans strains. R. opacus GM-14 utilizes a wide range of aromatic substrates, including benzene, 15 different halobenzenes, 18 phenols and 7 benzoates. This study revealed the high tolerance of R. opacus strains toward toxic hydrophobic compounds. R. opacus GM-14 grew in mineral medium to which benzene or monochlorobenzene was added in amounts of 13 or 3 g l-1, respectively. R. opacus GM-29 utilized toluene and benzene for growth. Strain GM-29 grew in mineral medium with 7 g l-1 of liquid toluene or benzene as the sole carbon source, corresponding to aqueous concentrations of 470 and 650 mg l-1, respectively. Most organic solvents, such as toluene and benzene, due to their high level of hydrophobicity, pass through the bacterial membrane, causing its disintegration. In this thesis the mechanisms of adaptation of rhodococci to toxic hydrophobic compounds were investigated. The rhodococcal strains increased the level of saturation of their cellular fatty acids in response to challenge with phenol, chlorophenol, benzene, chlorobenzene or toluene. The results indicated that increase in the saturation level of cellular fatty acids, particularly that in tuberculostearic acid, is part of the adaptation mechanism of strains GM-14 and GM-29 to the presence of toxic hydrophobic compounds.
Resumo:
In 2011, an outbreak of the quarantine-regulated pathogen Potato spindle tuber viroid (PSTVd) occurred in a commercial glasshouse-grown tomato crop in Queensland, Australia. Phylogenetic studies showed that the genotype of this isolate grouped in a cluster of PSTVd genotypes from tomato and Physalis peruviana, and exhibited an interesting mutation (U257→A) that has previously been linked to lethal symptom expression in tomato. Transmission studies showed that the viroid could be mechanically transmitted from crushed fruit sap, but not from undamaged fruits. A low rate of asymptomatic infection was determined for plants in the affected glasshouse, demonstrating the efficacy of using symptoms to detect PSTVd infections in tomato. No PSTVd infections were detected in solanaceous weeds located outside of the infected glasshouse, excluding them from playing a role in the viroid epidemiology. Monitoring and subsequent testing of new tomato crops grown in the facility demonstrated successful eradication of the pathogen. A trace-back analysis linked the outbreak of PSTVd to an infected imported tomato seed-lot, indicating that PSTVd is transmitted internationally through contaminated seed
Resumo:
Background Encephalomyocarditis (EMC) caused by EMC virus (EMCV) was diagnosed in a 5-month-old splenectomised calf, which died suddenly on an experimental farm that had a high infestation of rodents. Results At postmortem examination, the lungs were dark purple and diffusely congested. On histological examination, the calf had severe necrotising myocarditis. EMCV was isolated from the heart. The polyprotein gene of the EMCV isolate was amplified by PCR and had 85–91% identity with published EMCV sequences, including 89% identity with isolates from Queensland. On phylogenetic analysis, the polyprotein gene had highest sequence identity with South Korean EMCV strain, CBNU. Conclusion This is the first report of naturally occurring EMC in cattle in Australia and the first report of naturally occurring bovine EMC from which EMCV has been isolated.
Resumo:
Four Alternaria species groups (A. longipes, A. arborescens, A. alternata/A. tenuissima and A. tenuissima/A. mali) are associated with leaf blotch and fruit spot of apple in Australia. There is no information on the variability of pathogenicity among the species and isolates within each species causing leaf blotch or fruit spot. We used a detached leaf assay and an in planta fruit inoculation assay to determine the pathogenicity and virulence of the four Alternaria species. Our results showed that isolates within the same species were not specific to either leaf or fruit tissue and showed great variability in pathogenicity and virulence, indicating cross-pathogenicity, which may be isolate dependent rather than species dependent. Generally, virulence of A. tenuissima and A. alternata isolates on leaf and fruit was higher than other species. Isolates of all species groups were pathogenic on leaves of different cultivars, but pathogenicity on fruit of different cultivars varied among isolates and species. Implications of our findings on prevalence of the diseases in different apple-producing regions in Australia and the development of targeted disease management of the diseases are discussed
Resumo:
Measurement of individual emission sources (e.g., animals or pen manure) within intensive livestock enterprises is necessary to test emission calculation protocols and to identify targets for decreased emissions. In this study, a vented, fabric-covered large chamber (4.5 × 4.5 m, 1.5 m high; encompassing greater spatial variability than a smaller chamber) in combination with on-line analysis (nitrous oxide [N2O] and methane [CH4] via Fourier Transform Infrared Spectroscopy; 1 analysis min-1) was tested as a means to isolate and measure emissions from beef feedlot pen manure sources. An exponential model relating chamber concentrations to ambient gas concentrations, air exchange (e.g., due to poor sealing with the surface; model linear when ≈ 0 m3 s-1), and chamber dimensions allowed data to be fitted with high confidence. Alternating manure source emission measurements using the large-chamber and the backward Lagrangian stochastic (bLS) technique (5-mo period; bLS validated via tracer gas release, recovery 94-104%) produced comparable N2O and CH4 emission values (no significant difference at P < 0.05). Greater precision of individual measurements was achieved via the large chamber than for the bLS (mean ± standard error of variance components: bLS half-hour measurements, 99.5 ± 325 mg CH4 s-1 and 9.26 ± 20.6 mg N2O s-1; large-chamber measurements, 99.6 ± 64.2 mg CH4 s-1 and 8.18 ± 0.3 mg N2O s-1). The large-chamber design is suitable for measurement of emissions from manure on pen surfaces, isolating these emissions from surrounding emission sources, including enteric emissions. © © American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Resumo:
BACKGROUND: In order to rapidly and efficiently screen potential biofuel feedstock candidates for quintessential traits, robust high-throughput analytical techniques must be developed and honed. The traditional methods of measuring lignin syringyl/guaiacyl (S/G) ratio can be laborious, involve hazardous reagents, and/or be destructive. Vibrational spectroscopy can furnish high-throughput instrumentation without the limitations of the traditional techniques. Spectral data from mid-infrared, near-infrared, and Raman spectroscopies was combined with S/G ratios, obtained using pyrolysis molecular beam mass spectrometry, from 245 different eucalypt and Acacia trees across 17 species. Iterations of spectral processing allowed the assembly of robust predictive models using partial least squares (PLS). RESULTS: The PLS models were rigorously evaluated using three different randomly generated calibration and validation sets for each spectral processing approach. Root mean standard errors of prediction for validation sets were lowest for models comprised of Raman (0.13 to 0.16) and mid-infrared (0.13 to 0.15) spectral data, while near-infrared spectroscopy led to more erroneous predictions (0.18 to 0.21). Correlation coefficients (r) for the validation sets followed a similar pattern: Raman (0.89 to 0.91), mid-infrared (0.87 to 0.91), and near-infrared (0.79 to 0.82). These statistics signify that Raman and mid-infrared spectroscopy led to the most accurate predictions of S/G ratio in a diverse consortium of feedstocks. CONCLUSION: Eucalypts present an attractive option for biofuel and biochemical production. Given the assortment of over 900 different species of Eucalyptus and Corymbia, in addition to various species of Acacia, it is necessary to isolate those possessing ideal biofuel traits. This research has demonstrated the validity of vibrational spectroscopy to efficiently partition different potential biofuel feedstocks according to lignin S/G ratio, significantly reducing experiment and analysis time and expense while providing non-destructive, accurate, global, predictive models encompassing a diverse array of feedstocks.
Resumo:
The application of variable-number tandem repeats (VNTR) genotyping of Mycobacterium avium subsp. paratuberculosis isolates to assist in investigating incidents of bovine Johne’s disease in a low-prevalence region of Australia is described in the current study. Isolates from a response to detection of bovine Johne’s disease in Queensland were compared with strains from national and international sources. The tandem application of mycobacterial interspersed repetitive unit (MIRU) and multilocus short sequence repeats (MLSSR) genotyping identified 2 strains, 1 that infected cattle on multiple properties with trace-forward histories from a common infected property, and 1 genotypically different strain recovered from a single property. The former strain showed an identical genotype to an isolate from India. Neither strain showed a genotypic link to regions of Australia with a higher prevalence of the disease. Genotyping has indicated incursions from 2 independent sources. This intelligence has informed investigations into potential routes of entry and the soundness of ongoing control measures, and supported strategy and policy decisions regarding management of Mycobacterium avium subsp. paratuberculosis incursions for Queensland.
Resumo:
Since 2007, 96 wild Queensland groupers, Epinephelus lanceolatus, (Bloch), have been found dead in NE Australia. In some cases, Streptococcus agalactiae (Group B Streptococcus, GBS) was isolated. At present, a GBS isolate from a wild grouper case was employed in experimental challenge trials in hatchery-reared Queensland grouper by different routes of exposure. Injection resulted in rapid development of clinical signs including bilateral exophthalmia, hyperaemic skin or fins and abnormal swimming. Death occurred in, and GBS was re-isolated from, 98% fish injected and was detected by PCR in brain, head kidney and spleen from all fish, regardless of challenge dose. Challenge by immersion resulted in lower morbidity with a clear dose response. Whilst infection was established via oral challenge by admixture with feed, no mortality occurred. Histology showed pathology consistent with GBS infection in organs examined from all injected fish, from fish challenged with medium and high doses by immersion, and from high-dose oral challenge. These experimental challenges demonstrated that GBS isolated from wild Queensland grouper reproduced disease in experimentally challenged fish and resulted in pathology that was consistent with that seen in wild Queensland grouper infected with S. agalactiae.
Resumo:
Disease screening to determine the threat Puccinia psidii poses to plantation and native eucalypts in Australia was undertaken in half-sib families of two contrasting eucalypt species, Eucalyptus cloeziana and E. argophloia. Artificial inoculation with a single-lesion isolate of P. psidii was used to screen these species for resistance to the biotype of P. psidii established in Australia. The objective was to characterize resistance to P. psidii within these two distinct species: E. argophloia, a vulnerable species with a narrow distribution, and E. cloeziana, a species with a broad and extensive distribution in Queensland. Results for E. cloeziana indicate that inland provenances are more resistant to P. psidii infection than provenances from coastal regions. Heritability estimates for the two assessment systems used (resistance on a 1-to-5 ordinal scale verses resistance on a 0-to-1 binomial scale) were low to high (0.24 to 0.63) for E. argophloia and moderate to high (0.4 to 0.91) for E. cloeziana, indicating a significant level of additive genetic variance for rust resistance within the populations. This study demonstrates the potential to select resistant families within the tested populations and indicates that P. psidii could detrimentally affect these species in native forests, nurseries, and plantations.
Resumo:
Disease screening to determine the threat Puccinia psidii poses to plantation and native eucalypts in Australia was undertaken in half-sib families of two contrasting eucalypt species, Eucalyptus cloeziana and E. argophloia. Artificial inoculation with a single-lesion isolate of P. psidii was used to screen these species for resistance to the biotype of P. psidii established in Australia. The objective was to characterize resistance to P. psidii within these two distinct species: E. argophloia, a vulnerable species with a narrow distribution, and E. cloeziana, a species with a broad and extensive distribution in Queensland. Results for E. cloeziana indicate that inland provenances are more resistant to P. psidii infection than provenances from coastal regions. Heritability estimates for the two assessment systems used (resistance on a 1-to-5 ordinal scale verses resistance on a 0-to-1 binomial scale) were low to high (0.24 to 0.63) for E. argophloia and moderate to high (0.4 to 0.91) for E. cloeziana, indicating a significant level of additive genetic variance for rust resistance within the populations. This study demonstrates the potential to select resistant families within the tested populations and indicates that P. psidii could detrimentally affect these species in native forests, nurseries, and plantations. Disease screening to determine the threat Puccinia psidii poses to plantation and native eucalypts in Australia was undertaken in half-sib families of two contrasting eucalypt species, Eucalyptus cloeziana and E. argophloia. Artificial inoculation with a single-lesion isolate of P. psidii was used to screen these species for resistance to the biotype of P. psidii established in Australia. The objective was to characterize resistance to P. psidii within these two distinct species: E. argophloia, a vulnerable species with a narrow distribution, and E. cloeziana, a species with a broad and extensive distribution in Queensland. Results for E. cloeziana indicate that inland provenances are more resistant to P. psidii infection than provenances from coastal regions. Heritability estimates for the two assessment systems used (resistance on a 1-to-5 ordinal scale verses resistance on a 0-to-1 binomial scale) were low to high (0.24 to 0.63) for E. argophloia and moderate to high (0.4 to 0.91) for E. cloeziana, indicating a significant level of additive genetic variance for rust resistance within the populations. This study demonstrates the potential to select resistant families within the tested populations and indicates that P. psidii could detrimentally affect these species in native forests, nurseries, and plantations.
Resumo:
A recently developed spot form of blotch differential set of 16 barley lines was tested for reaction response to 60 Pyrenophora teres f. maculata isolates from geographically disperse barley crops of Australia. Twelve barley lines (Arimont, Barque, Chebec, CI5286, CI5791, CI9214, CII6150, Dairokkaku, Esperance Orge 289, Galleon, Keel, Skiff, Torrens and TR250) provided differential response between the isolates. The susceptible controls Gairdner and Kombar provided indication of isolate virulence or avirulence. Abundant pathogenic diversity was revealed with 33 designated pathotypes, some of which related to geographic region. AFLP analysis also revealed abundant diversity with each of the isolates representing a unique genotype and one isolate that contained both AFLP bands unique to P. teres f. maculata and P. teres f. teres, the cause of spot form and net form of net blotch respectively, suggesting that sexual recombination between the net form and spot form isolates may have occurred naturally in the field.
Resumo:
This study investigated antimicrobial resistance traits, clonal relationships and epidemiology of Histophilus somni isolated from clinically affected cattle in Queensland and New South Wales, Australia. Isolates (n = 53) were subjected to antimicrobial susceptibility testing against six antimicrobial agents (ceftiofur, enrofloxacin, florfenicol, tetracycline, tilmicosin and tulathromycin) using disc diffusion and minimum inhibitory concentration (MIC) assays. Clonal relationships were assessed using repetitive sequence PCR and descriptive epidemiological analysis was performed. The H. somni isolates appeared to be geographically clonal, with 27/53 (47%) isolates grouping in one cluster from one Australian state. On the basis of disc diffusion, 34/53 (64%) isolates were susceptible to all antimicrobial agents tested; there was intermediate susceptibility to tulathromycin in 12 isolates, tilmicosin in seven isolates and resistance to tilmicosin in one isolate. Using MIC, all but one isolate was susceptible to all antimicrobial agents tested; the non-susceptible isolate was resistant to tetracycline, but this MIC result could not be compared to disc diffusion, since there are no interpretative guidelines for disc diffusion for H. somni against tetracycline. In this study, there was little evidence of antimicrobial resistance in H. somni isolates from Australian cattle. Disc diffusion susceptibility testing results were comparable to MIC results for most antimicrobial agents tested; however, results for isolates with intermediate susceptibility or resistance to tilmicosin and tulathromycin on disc diffusion should be interpreted with caution in the absence of MIC results.