916 resultados para IONS REMOVAL
Resumo:
By exciting at 940 nm, we have characterized the 1.84 m near infrared emission of trivalent thulium ions in Yb3+, Tm3+:KGd WO4 2 single crystals as a function of the dopant concentration and temperature, from 10 K to room temperature. An overall 3H6 Stark splitting of 470 cm−1 for the Tm3+ ions in the Yb3+, Tm3+:KGd WO4 2 was obtained. We also studied the blue emission at 476 nm Tm3+ and the near infrared emissions at 1.48 m Tm3+ and 1 m Yb3+ as a function of the dopant concentration. Experimental decay times of the 1G4, 3H4, and 3F4 Tm3+ and 2F5/2 Yb3+ excited states have been measured as a function of Yb3+ and Tm3+ ion concentrations. For the 3F4 →3H6 transition of Tm3+ ions, we used the reciprocity method to calculate the maximum emission cross section of 3.07 10−20 cm2 at 1.84 m for the polarization parallel to the Nm principal optical direction.
Resumo:
AbstractObjective:To report the results of computed tomography (CT)-guided percutaneous resection of the nidus in 18 cases of osteoid osteoma.Materials and Methods:The medical records of 18 cases of osteoid osteoma in children, adolescents and young adults, who underwent CT-guided removal of the nidus between November, 2004 and March, 2009 were reviewed retrospectively for demographic data, lesion site, clinical outcome and complications after procedure.Results:Clinical follow-up was available for all cases at a median of 29 months (range 6–60 months). No persistence of pre-procedural pain was noted on 17 patients. Only one patient experienced recurrence of symptoms 12 months after percutaneous resection, and was successfully retreated by the same technique, resulting in a secondary success rate of 18/18 (100%).Conclusion:CT-guided removal or destruction of the nidus is a safe and effective alternative to surgical resection of the osteoid osteoma nidus.
Resumo:
A BASIC computer program (REMOVAL) was developed to compute in a VAXNMS environment all the calculations of the removal method for population size estimation (catch-effort method for closed populations with constant sampling effort). The program follows the maximum likelihood methodology,checks the failure conditions, applies the appropriate formula, and displays the estimates of population size and catchability, with their standard deviations and coefficients of variation, and two goodness-of-fit statistics with their significance levels. Data of removal experiments for the cyprinodontid fish Aphanius iberus in the Alt Emporda wetlands are used to exemplify the use of the program
Resumo:
Coal ashes produced in coal-fired power plant could be converted into zeolites and can be used as low-cost adsorbents for the treatment of effluents contaminated with high levels of toxic metals. The capacity of synthetic zeolites for the removal of cadmium, zinc and copper ions from aqueous solutions has been investigated under different operating conditions. Zeolite from bottom chimney showed higher removal efficiency for metals ions than zeolite from feed hopper and mixing mill. The results indicated that the treated bottom ash could be applied in environmental technology as an immobilizer of pollutants.
Resumo:
Nonnative brook trout Salvelinus fontinalis are abundant in Pine Creek and its main tributary, Bogard Spring Creek, California. These creeks historically provided the most spawning and rearing habitat for endemic Eagle Lake rainbow trout Oncorhynchus mykiss aquilarum. Three-pass electrofishing removal was conducted in 2007–2009 over the entire 2.8-km length of Bogard Spring Creek to determine whether brook trout removal was a feasible restoration tool and to document the life history characteristics of brook trout in a California meadow stream. After the first 2 years of removal, brook trout density and biomass were severely reduced from 15,803 to 1,192 fish/ha and from 277 to 31 kg/ha, respectively. Average removal efficiency was 92–97%, and most of the remaining fish were removed in the third year. The lack of a decrease in age-0 brook trout abundance between 2007 and 2008 after the removal of more than 4,000 adults in 2007 suggests compensatory reproduction of mature fish that survived and higher survival of age-0 fish. However, recruitment was greatly reduced after 2 years of removal and is likely to be even more depressed after the third year of removal assuming that immigration of fish from outside the creek continues to be minimal. Brook trout condition, growth, and fecundity indicated a stunted population at the start of the study, but all three features increased significantly every year, demonstrating compensatory effects. Although highly labor intensive, the use of electrofishing to eradicate brook trout may be feasible in Bogard Spring Creek and similar small streams if removal and monitoring are continued annually and if other control measures (e.g., construction of barriers) are implemented. Our evidence shows that if brook trout control measures continue and if only Eagle Lake rainbow trout are allowed access to the creek, then a self-sustaining population ofEagle Lake rainbow trout can become reestablished
Resumo:
This paper discusses the results obtained with homogeneous catalytic ozonation [Mn (II) and Cu (II)] in phenol degradation. The reduction of total phenols and total organic carbon (TOC) and the ozone consumption were evaluated. The efficiency in phenol degradation (total phenol removal) at pH 3, with the catalytic process (Mn (II)), increased from 37% to 55% while the TOC removal increased from 4 to 63% in a seven-minute treatment. The ozonation process efficiency at pH 10 was 43% and 39% for phenol and TOC removal, respectively. The presence of both metallic ions (Mn2+ and Cu+2) in the ozonation process resulted in a positive effect.
Resumo:
Considerable attention has been paid to chitosan and derivatives as efficient adsorbents of pollutants such as metal ions and dyes in aqueous medium. Nevertheless, no report can be found on the remedial actions of chitosan microspheres crosslinked with tripolyphosphate to control acidity, iron (III) and manganese (II) contents in wastewaters from coal mining. In this work, chitosan microspheres crosslinked with tripolyphosphate were used for the neutralization of acidity and removal of Fe (III) and Mn (II) from coal mining wastewaters. The study involved static and dinamic methods. The neutralization capacity of the surface of the static system was 395 mmol of H3O+ per kilogram of microspheres, higher than that of the dynamic one (223 mmol kg-1). The removal of Fe(III) in wastewater was of 100% and that of Mn(II) was 90%.
Resumo:
Hydrogen peroxide bleaching of sodium alginate from seaweeds oh the Sargassum genus was studied. The influence of H2O2 concentration (percentage of H2O2 on a dry weight alginate basis, w/w) and NaOH/H2O2 ratio (% NaOH/% H2O2, both referred to a dry weight alginate basis, w/w) on the molecular weight, color removal and content of Fe3+ ions of bleached alginate samples was investigated by UV and IR spectroscopies, colorimetric determination of Fe3+ ions and vapor pressure osmometry. Higher yield, purity and molecular weight of alginate were obtained using 3% (or less) of hydrogen peroxide and a NaOH/H2O2 ratio of 1.2 for bleaching.
Resumo:
Solid-state MBz compounds, where M stands for bivalent Mn, Fe, Co, Ni, Cu and Zn and Bz is benzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The procedure used in the preparation of the compounds via reaction of basic carbonates with benzoic acid is not efficient in eliminating excess acid. However the TG-DTA curves permitted to verify that the binary compounds can be obtained by thermosynthesis, because the benzoic acid can be eliminated before the thermal decomposition of these compounds. The results led to information about the composition, dehydration, thermal stability, thermal decomposition and structure of the isolated compounds. On heating, these compounds decompose in two (Mn, Co, Ni, Zn) or three (Fe, Cu) steps with formation of the respective oxide (Mn3O4, Fe2O3, Co3O4, NiO, CuO and ZnO) as final residue. The theoretical and experimental spectroscopic studies suggest a covalent bidentate bond between ligand and metallic center.
Resumo:
Green coconut shells were treated with acid, base and hydrogen peroxide solutions for 3, 6, 12 and 24 h for removing toxic metals from synthetic wastewater. The removal of ions by the adsorbent treated with 0.1 mol L-1 NaOH/ 3h was 99.5% for Pb2+ and 97.9% for Cu2+. The removal of Cd2+, Ni2+, Zn2+, using adsorbent treated with 1.0 mol L-1 NaOH/3 h, was 98.5, 90.3 and 95.4%, respectively. Particle size, adsorbent concentration and adsorption kinetics were also studied. An adsorbent size of 60-99 mesh and a concentration of 30-40 g/L for 5 min exposure were satisfactory for maximum uptake of Pb2+, Ni2+, Cd2+, Zn2+ and Cu2+ and can be considered as promising parameters for treatment the aqueous effluents contaminated with toxic metals.
Resumo:
The biosorption, based on the use of biomass for removal of ions is distinguished as an innovative and promising technology when compared with the traditional methods. In this context, the aim of the present work is to use Saccharomyces cerevisiae as biosorbent for the retention of Pb2+ metal ions. Factorial design was used for evaluation of the process. The observed equilibrium data were well described by Langmuir and Freundlich adsorption isotherms. The maximum adsorption capacity was 1486.88 mg/g. The results indicated that Saccharomyces cerevisiae is suitable for biosorption of Pb2+ metal ions.
Resumo:
The stereoselective addition of the titanium (IV) enolates derived from (S)-4-isopropyl-N-4-chlorobutyryl-1,3-thiazolidine-2-thione (8) and from (S)-4-isopropyl-N-4-chloropentanoyl-1,3-thiazolidine-2-thione (9) to N-Boc-2-methoxypyrrolidine (5b) afforded the addition products (+)-10 and (+)-11 in 84% yield in both cases, as 8.6:1 and 10:1 diastereoisomeric mixtures, respectively. A three-step sequence allowed to convert these adducts to (+)-isoretronecanol (1) and (+)-5-epi-tashiromine (2) in 43% and 49% overall yield, respectively.
Resumo:
The aim of this work is to evaluate the use of natural zeolites to remove the NH4+ that remains in effluents from swine facilities which were submitted to physico-chemical and biological treatments. Experiments were made in batch made adding 5% (w/w) of adsorbent (0.6-1.3 and 3.0-8.0 mm) to synthetic and real swine facilities effluents. The results show that ammonium removal is influenced by adsorbent particle size and the presence of other ions in the effluent. The adsorption equilibrium was described by Langmuir as well as Freundlich isotherms and the kinetic data fitted well a pseudo-second order model.
Resumo:
This work describes the use of clinoptilolite for removal of ammonium ions present in waters produced at the Campos' Basin. Samples were previously treated in order to remove organic compounds and metals. Experiments were run in fixed- and fluidized-bed systems, at room temperature. The fluidized-bed systems did not remove efficiently the ammonium ion. The best operational conditions were obtained with clinoptilolite particle size in the range 0.30-0.50 mm, under ascendant flow (3 mL min-1), in a fixed-bed system. The best zeolite performance was found when it was pretreated with 0.5 mol L-1 NaOH. Na+ was the most important interfering ion due to its high concentration in the water. Clinoptilolite lost partially its capacity to retain ammonium ions after several regeneration cycles with NaOH.
Resumo:
The present study deals with phenol adsorption on chitin and chitosan and removal of contaminants from wastewater of a petroleum refinery. The adsorption kinetic data were best fitted to first- and second-order models for chitosan and chitin, respectively. The results of adsorption isotherms showed Langmuir model more appropriately described than a Freundlich model for both adsorbents. The adsorption capacity was 1.96 and 1.26 mg/g for chitin and chitosan, respectively. Maximum removal of phenol was about 70-80% (flow rate: 1.5 mL/min, bed height: 18.5 cm, and 30 mg/L of phenol. Wastewater treatment with chitin in a fixed-bed system showed reductions of about 52 and 92% for COD and oil and greases, and for chitosan 65 and 67%, respectively. The results show improvement of the effluent quality after treatment with chitin and chitosan.