987 resultados para INTENSITIES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work focuses on the role of macroseismology in the assessment of seismicity and probabilistic seismic hazard in Northern Europe. The main type of data under consideration is a set of macroseismic observations available for a given earthquake. The macroseismic questionnaires used to collect earthquake observations from local residents since the late 1800s constitute a special part of the seismological heritage in the region. Information of the earthquakes felt on the coasts of the Gulf of Bothnia between 31 March and 2 April 1883 and on 28 July 1888 was retrieved from the contemporary Finnish and Swedish newspapers, while the earthquake of 4 November 1898 GMT is an example of an early systematic macroseismic survey in the region. A data set of more than 1200 macroseismic questionnaires is available for the earthquake in Central Finland on 16 November 1931. Basic macroseismic investigations including preparation of new intensity data point (IDP) maps were conducted for these earthquakes. Previously disregarded usable observations were found in the press. The improved collection of IDPs of the 1888 earthquake shows that this event was a rare occurrence in the area. In contrast to earlier notions it was felt on both sides of the Gulf of Bothnia. The data on the earthquake of 4 November 1898 GMT were augmented with historical background information discovered in various archives and libraries. This earthquake was of some concern to the authorities, because extra fire inspections were conducted in three towns at least, i.e. Tornio, Haparanda and Piteå, located in the centre of the area of perceptibility. This event posed the indirect hazard of fire, although its magnitude around 4.6 was minor on the global scale. The distribution of slightly damaging intensities was larger than previously outlined. This may have resulted from the amplification of the ground shaking in the soft soil of the coast and river valleys where most of the population was found. The large data set of the 1931 earthquake provided an opportunity to apply statistical methods and assess methodologies that can be used when dealing with macroseismic intensity. It was evaluated using correspondence analysis. Different approaches such as gridding were tested to estimate the macroseismic field from the intensity values distributed irregularly in space. In general, the characteristics of intensity warrant careful consideration. A more pervasive perception of intensity as an ordinal quantity affected by uncertainties is advocated. A parametric earthquake catalogue comprising entries from both the macroseismic and instrumental era was used for probabilistic seismic hazard assessment. The parametric-historic methodology was applied to estimate seismic hazard at a given site in Finland and to prepare a seismic hazard map for Northern Europe. The interpretation of these results is an important issue, because the recurrence times of damaging earthquakes may well exceed thousands of years in an intraplate setting such as Northern Europe. This application may therefore be seen as an example of short-term hazard assessment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interaction between forests and the atmosphere occurs by radiative and turbulent transport. The fluxes of energy and mass between surface and the atmosphere directly influence the properties of the lower atmosphere and in longer time scales the global climate. Boreal forest ecosystems are central in the global climate system, and its responses to human activities, because they are significant sources and sinks of greenhouse gases and of aerosol particles. The aim of the present work was to improve our understanding on the existing interplay between biologically active canopy, microenvironment and turbulent flow and quantify. In specific, the aim was to quantify the contribution of different canopy layers to whole forest fluxes. For this purpose, long-term micrometeorological and ecological measurements made in a Scots pine (Pinus sylvestris) forest at SMEAR II research station in Southern Finland were used. The properties of turbulent flow are strongly modified by the interaction between the canopy elements: momentum is efficiently absorbed in the upper layers of the canopy, mean wind speed and turbulence intensities decrease rapidly towards the forest floor and power spectra is modulated by spectral short-cut . In the relative open forest, diabatic stability above the canopy explained much of the changes in velocity statistics within the canopy except in strongly stable stratification. Large eddies, ranging from tens to hundred meters in size, were responsible for the major fraction of turbulent transport between a forest and the atmosphere. Because of this, the eddy-covariance (EC) method proved to be successful for measuring energy and mass exchange inside a forest canopy with exception of strongly stable conditions. Vertical variations of within canopy microclimate, light attenuation in particular, affect strongly the assimilation and transpiration rates. According to model simulations, assimilation rate decreases with height more rapidly than stomatal conductance (gs) and transpiration and, consequently, the vertical source-sink distributions for carbon dioxide (CO2) and water vapor (H2O) diverge. Upscaling from a shoot scale to canopy scale was found to be sensitive to chosen stomatal control description. The upscaled canopy level CO2 fluxes can vary as much as 15 % and H2O fluxes 30 % even if the gs models are calibrated against same leaf-level dataset. A pine forest has distinct overstory and understory layers, which both contribute significantly to canopy scale fluxes. The forest floor vegetation and soil accounted between 18 and 25 % of evapotranspiration and between 10 and 20 % of sensible heat exchange. Forest floor was also an important deposition surface for aerosol particles; between 10 and 35 % of dry deposition of particles within size range 10 30 nm occurred there. Because of the northern latitudes, seasonal cycle of climatic factors strongly influence the surface fluxes. Besides the seasonal constraints, partitioning of available energy to sensible and latent heat depends, through stomatal control, on the physiological state of the vegetation. In spring, available energy is consumed mainly as sensible heat and latent heat flux peaked about two months later, in July August. On the other hand, annual evapotranspiration remains rather stable over range of environmental conditions and thus any increase of accumulated radiation affects primarily the sensible heat exchange. Finally, autumn temperature had strong effect on ecosystem respiration but its influence on photosynthetic CO2 uptake was restricted by low radiation levels. Therefore, the projected autumn warming in the coming decades will presumably reduce the positive effects of earlier spring recovery in terms of carbon uptake potential of boreal forests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

neral expressions have been derived for the intensities of the three classes of Raman lines namely totally symmetric A, doubly degenerate E and triply degenerate F, in the case of cubic crystals under the following conditions. The direction of the incident beam which is polarised with its electric vector inclined at an angle α to the normal to the scattering plane makes an angle Θ with one of the cubic axes of the crystal. The transversely scattered light is analysed by a double image prism with its principal axes inclined at angle β to the normal to the scattering plane, which is horizontal. For incident unpolarised light and Θ=22 1/2°, and the scattered light being analysed by a double image prism rotated through 45° from the position when its principal axes are vertical and horizontal ρ{variant} for A lines is equal to one, for E lines >1 and for F lines <1. This gives a method of classifying the Raman lines of a cubic crystal in a single setting. The results have been experimentally verified in sodium chlorate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the persistent pattern in the Helsinki Exchanges. The persistent pattern is analyzed using a time and a price approach. It is hypothesized that arrival times are related to movements in prices. Thus, the arrival times are defined as durations and formulated as an Autoregressive Conditional Duration (ACD) model as in Engle and Russell (1998). The prices are defined as price changes and formulated as a GARCH process including duration measures. The research question follows from market microstructure predictions about price intensities defined as time between price changes. The microstructure theory states that long transaction durations might be associated with both no news and bad news. Accordingly, short durations would be related to high volatility and long durations to low volatility. As a result, the spread will tend to be larger under intensive moments. The main findings of this study are 1) arrival times are positively autocorrelated and 2) long durations are associated with low volatility in the market.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrafast Raman loss spectroscopy (URLS) enables one to obtain the vibrational structural information of molecular systems including fluorescent materials. URLS, a nonlinear process analog to stimulated Raman gain, involves a narrow bandwidth picosecond Raman pump pulse anda femtosecond broadband white light continuum. Under nonresonant condition, the Raman response appears as a negative (loss) signal, whereas, on resonance with the electronic transition the line shape changes from a negative to a positive through a dispersive form. The intensities observed and thus, the Franck-Condon activity (coordinate dependent), are sensitive to the wavelength of the white light corresponding to a particular Raman frequency with respect to the Raman pump pulse wavelength, i.e., there is a mode-dependent response in URLS. (C) 2010 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drop formation from single nozzles under pulsed flow conditions in non-Newtonian fluids following the power law model has been studied. An existing model has been modified to explain the experimental data. The flow conditions employed correspond to the mixer—settler type of operation in pulsed sieve-plate extraction columns. The modified model predicts the drop sizes satisfactorily. It has been found that consideration of non-Newtonian behaviour is important at low pulse intensities and its significance decreases with increasing intensity of pulsation. Further, the proposed model for single orifices has been tested to predict the sizes of drops formed from a sieve-plate distributor having four holes, and has been found to predict the sizes fairly well in the absence of coalescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The activation of functional responses in rabbit peritoneal neutrophils by gramicidin and the chemotactic peptide, N-formyl-methionyl-leucyl-phenylalanine methyl ester, was studied. Gramicidin activated superoxide generation, lysosomal enzyme release and a decrease in fluorescence of chlortetracycline-loaded cells, as for the chemotactic peptide. The maximum intensities of the responses by gramicidin were lower than that by chemotactic peptide. Responses by both these peptides could be inhibited by t-butyloxycarbonyl-methionyl-leucyl-phenylalanine, a chemotactic peptide receptor antagonist. Gramicidin gave responses at low doses comparable to that of the chemotactic peptide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A complete vibrational analysis was performed on the molecular structure of boldine hydrochloride using QM/MM method. The equilibrium geometry, harmonic vibrational frequencies and infrared intensities were calculated by QM/MM method with B3LYP/6-31G(d) and universal force field (UFF) combination using ONIOM code. We found the geometry obtained by the QM/MM method to be very accurate, and we can use this rapid method in place of time consuming ab initio methods for large molecules. A detailed interpretation of the infrared spectra of boldine hydrochloride is reported. The scaled theoretical wave numbers are in perfect agreement with the experimental values. The FT-IR spectra of boldine hydrochloride in the region 4000-500 cm(-1) were recorded in CsI (solid phase) and in chloroform with concentration 5 and 10 mg/ml.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the peptide Boc-Aibl-Ala2-Leu3- Aib4-Alas Leu'-Aib7-Ala8-Leu9-Aib'0-OMe [with a t-butoxycarbonyl(Boc) blocking group at the amino terminus, a methyl ester (OMe) at the carboxyl terminus, and four a-aminoisobutyric (Aib) residues] has a 3-fold repeat of residues, the helix formed by the peptide backbone is irregular. The carboxyl-terminal half assumes an at-helical form with torsion angles ) and r of approximately -60° and -45°, respectively, whereas the amino-terminal half is distorted by an insertion of a water molecule between the amide nitrogen of Ala5 [N(5)] and the carbonyl oxygen of Ala2 [0(2)]. The water molecule W(1) acts as a bridge by forming hydrogen bonds N(5).W(1) (2.93 A) and W(1)---0(2) (2.86 A). The distortion of the helix exposes the carbonyl oxygens of Aib' and Aib4 to the outside environment, with the consequence that the helix assumes an amphiphilic character despite having all apolar residues. Neighboring helices in the crystal run in antiparallel directions. On one side of a helix there are only hydrophobic contacts with efficient interdigitation of leucine side chains with those from the neighboring helix. On the other side of the helix there are hydrogen bonds between protruding carbonyl oxygens and four water molecules that separate two neighboring helices. Along the helix axis the helices bind head-to-tail with a direct hydrogen bond N(2)-0(9) (3.00 A). Crystals grown from methanol/water solution are in space group P2, with a = 15.778 ± 0.004 A, b = 11.228 ± 0.002 A, c = 18.415 ± 0.003 A, = 102.10 ± 0.02ur and two formula units per cell for C49HON1003 2H2OCH3OH. The overall agreement factorR is 7.5% for 3394 reflections observed with intensities >3a(F), and the resolution is 0.90 A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paraserianthes falcataria is a very fast growing, light wood tree species, that has recently gained wide interest in Indonesia for industrial wood processing. At the moment the P. falcataria plantations managed by smallholders are lacking predefined management programmes for commercial wood production. The general objective of this study was to model the growth and yield of Paraserianthes falcataria stands managed by smallholders in Ciamis, West Java, Indonesia and to develop management scenarios for different production objectives. In total 106 circular sample plots with over 2300 P. falcataria trees were assessed on smallholder plantation inventory. In addition, information on market prices of P. falcataria wood was collected through rapid appraisals among industries. A tree growth model based on Chapman-Richards function was developed on three different site qualities and the stand management scenarios were developed under three management objectives: (1) low initial stand density with low intensity stand management, (2) high initial stand density with medium intensity of intervention, (3) high initial stand density and strong intensity of silvicultural interventions, repeated more than once. In general, the 9 recommended scenarios have rotation ages varying from 4 to 12 years, planting densities from 4x4 meters (625 trees ha-1) to 3x2 meters (1666 trees ha-1) and thinnings at intensities of removing 30 to 60 % of the standing trees. The highest annual income would be generated on high-quality with a scenario with initial planting density 3x2 m (1666 trees ha-1) one thinning at intensity of removing 55 % of the standing trees at the age of 2 years and clear cut at the age of 4 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel one and two dimensional NMR techniques are proposed and utilized for the determination of the signs of the order parameters used for the study of the mobility of the fatty acid chains. The experiments designed to extract this information involve the use of the intensities of the side bands in the spectra of oriented systems spinning at the magic angle. Advantages of the two dimensional technique over the one dimensional method are discussed. The utility of the method in the study of the dynamic properties of membranes and model systems is pointed out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report femtosecond time-resolved reflectivity measurements of coherent phonons in tellurium performed over a wide range of temperatures (3-296 K) and pump-laser intensities. A totally symmetric A(1) coherent phonon at 3.6 THz responsible for the oscillations in the reflectivity data is observed to be strongly positively chirped (i.e., phonon time period decreases at longer pump-probe delay times) with increasing photoexcited carrier density, more so at lower temperatures. We show that the temperature dependence of the coherent phonon frequency is anomalous (i.e, increasing with increasing temperature) at high photoexcited carrier density due to electron-phonon interaction. At the highest photoexcited carrier density of (1.4 x 10(21) cm(-3) and the sample temperature of 3 K, the lattice displacement of the coherent phonon mode is estimated to be as high as similar to 0.24 angstrom. Numerical simulations based on coupled effects of optical absorption and carrier diffusion reveal that the diffusion of carriers dominates the nonoscillatory electronic part of the time-resolved reflectivity. Finally, using the pump-probe experiments at low carrier density of 6 x 10(18) cm(-3), we separate the phonon anharmonicity to obtain the electron-phonon coupling contribution to the phonon frequency and linewidth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the recent years. India has emerged as one of the fast growing economies of the world necessitating equally rapid increase in modern energy consumption. With an imminent global climate change threat, India will have difficulties in continuing with this rising energy use levels towards achieving high economic growth. It will have to follow an energy-efficient pathway in attaining this goal. In this context, an attempt is made to present India's achievements on the energy efficiency front by tracing the evolution of policies and their impacts. The results indicate that India has made substantial progress in improving energy efficiency which is evident from the reductions achieved in energy intensities of GDP to the tune of 88% during 1980-2007. Similar reductions have been observed both with respect to overall Indian economy and the major sectors of the economy. In terms of energy intensity of GDP, India occupies a relatively high position of nine among the top 30 energy consuming countries of the world. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of the correlations between material properties and normalized erosion resistance (inverse of erosion rates) of various materials tested in the rotating disk and the flow venturi at various intensities indicates that different individual properties influence different stages of erosion. At high and low intensities of erosion, energy properties predominate the phenomenon, whereas at intermediate intensities strength and acoustic properties become more significant. However, both strength and energy properties are significant in the correlations for the entire spectrum of erosion when extensive cavitation and liquid impingement data from several laboratories involving different intensities and hydrodynamic conditions are considered. The use of true material properties improved the statistical parameters by 3 to 37%, depending on the intensity of erosion. It is possible to evaluate qualitatively the erosion resistances of materials based on the true stress-true strain curves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of the Advanced Regional Prediction System (ARPS) in simulating an extreme rainfall event is evaluated, and subsequently the physical mechanisms leading to its initiation and sustenance are explored. As a case study, the heavy precipitation event that led to 65 cm of rainfall accumulation in a span of around 6 h (1430 LT-2030 LT) over Santacruz (Mumbai, India), on 26 July, 2005, is selected. Three sets of numerical experiments have been conducted. The first set of experiments (EXP1) consisted of a four-member ensemble, and was carried out in an idealized mode with a model grid spacing of 1 km. In spite of the idealized framework, signatures of heavy rainfall were seen in two of the ensemble members. The second set (EXP2) consisted of a five-member ensemble, with a four-level one-way nested integration and grid spacing of 54, 18, 6 and 1 km. The model was able to simulate a realistic spatial structure with the 54, 18, and 6 km grids; however, with the 1 km grid, the simulations were dominated by the prescribed boundary conditions. The third and final set of experiments (EXP3) consisted of a five-member ensemble, with a four-level one-way nesting and grid spacing of 54, 18, 6, and 2 km. The Scaled Lagged Average Forecasting (SLAF) methodology was employed to construct the ensemble members. The model simulations in this case were closer to observations, as compared to EXP2. Specifically, among all experiments, the timing of maximum rainfall, the abrupt increase in rainfall intensities, which was a major feature of this event, and the rainfall intensities simulated in EXP3 (at 6 km resolution) were closest to observations. Analysis of the physical mechanisms causing the initiation and sustenance of the event reveals some interesting aspects. Deep convection was found to be initiated by mid-tropospheric convergence that extended to lower levels during the later stage. In addition, there was a high negative vertical gradient of equivalent potential temperature suggesting strong atmospheric instability prior to and during the occurrence of the event. Finally, the presence of a conducive vertical wind shear in the lower and mid-troposphere is thought to be one of the major factors influencing the longevity of the event.