986 resultados para INSTRUMENTED SHARP INDENTATION
Resumo:
In this paper we use sensor-annotated abstraction hierarchies (Reising & Sanderson, 1996, 2002a,b) to show that unless appropriately instrumented, configural displays designed according to the principles of ecological interface design (EID) might be vulnerable to misinterpretation when sensors become unreliable or are unavailable. Building on foundations established in Reising and Sanderson (2002a) we use a pasteurization process control example to show how sensor-annotated AHs help the analyst determine the impact of different instrumentation engineering policies on a configural display that is part of an ecological interface. Our analyses suggest that configural displays showing higher-order properties of a system are especially vulnerable under some conservative instrumentation configurations. However, sensor-annotated AHs can be used to indicate where corrective instrumentation might be placed. We argue that if EID is to be effectively employed in the design of displays for complex systems, then the information needs of the human operator need to be considered while instrumentation requirements are being formulated. Rasmussen's abstraction hierarchy-and particularly its extension to the analysis of information captured by sensors and derived from sensors-may therefore be a useful adjunct to up-stream instrumentation design. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
It is currently unclear whether it is the need to maintain metabolic efficiency, the need to keep skeletal loading below critical force levels, or simple mechanical factors that drive the walk-to-run (W R) and run-to-walk (R-W) transitions in human gait. Eighteen adults (9 males and 9 females) locomoted on an instrumented treadmill using their preferred gait. Each completed 2 ascending (W-R) and 2 descending (R-W) series of trials under three levels of loading (0%, 15% and 30% body weight). For each trial, participants locomoted for 60 s at each of 9 different speeds -4 speeds both above and below their preferred transition speed (PTS) plus their PTS. Evidence was sought for critical levels of key kinetic (maximum vertical force, impulse, first peak force, time to first peak force and maximum loading rate), energetic (oxygen consumption, transport cost) and mechanical variables (limb lengths, strength) predictive of the gait transition. Analyses suggested the kinetic variables of time to first peak force and loading rate as the most likely determinants of the W-R and R-W transitions. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Observational data collected in the Lake Tekapo hydro catchment of the Southern Alps in New Zealand are used to analyse the wind and temperature fields in the alpine lake basin during summertime fair weather conditions. Measurements from surface stations, pilot balloon and tethersonde soundings, Doppler sodar and an instrumented light aircraft provide evidence of multi-scale interacting wind systems, ranging from microscale slope winds to mesoscale coast-to-basin flows. Thermal forcing of the winds occurred due to differential heating as a consequence of orography and heterogeneous surface features, which is quantified by heat budget and pressure field analysis. The daytime vertical temperature structure was characterised by distinct layering. Features of particular interest are the formation of thermal internal boundary layers due to the lake-land discontinuity and the development of elevated mixed layers. The latter were generated by advective heating from the basin and valley sidewalls by slope winds and by a superimposed valley wind blowing from the basin over Lake Tekapo and up the tributary Godley Valley. Daytime heating in the basin and its tributary valleys caused the development of a strong horizontal temperature gradient between the basin atmosphere and that over the surrounding landscape, and hence the development of a mesoscale heat low over the basin. After noon, air from outside the basin started flowing over mountain saddles into the basin causing cooling in the lowest layers, whereas at ridge top height the horizontal air temperature gradient between inside and outside the basin continued to increase. In the early evening, a more massive intrusion of cold air caused rapid cooling and a transition to a rather uniform slightly stable stratification up to about 2000 m agl. The onset time of this rapid cooling varied about 1-2 h between observation sites and was probably triggered by the decay of up-slope winds inside the basin, which previously countered the intrusion of air over the surrounding ridges. The intrusion of air from outside the basin continued until about mid-night, when a northerly mountain wind from the Godley Valley became dominant. The results illustrate the extreme complexity that can be caused by the operation of thermal forcing processes at a wide range of spatial scales.
Resumo:
The hanging wall of the Alpine Fault near Franz Josef Glacier has been exhumed during the past similar to2-3 m.y. providing a sample of the ductilely deformed middle crust of a modem obliquely convergent orogen. Presently exposed rocks of the Pacific Plate are inferred to have undergone several phases of ductile deformation as they moved westward above a mid-crustal detachment. Initially they were transpressed across the outboard part of the orogen, resulting in oblate fabrics with a down-dip stretch. Later, they encountered the Alpine Fault, experiencing an oblique-slip backshearing on vertical planes. This escalator-like deformation tilted and thinned the incoming crust onto that crustal-scale oblique ramp. This style of hanging wall deformation may affect only the most rapidly uplifting, central part of the Southern Alps because of the low flexural rigidity of the crust in that region and its displacement over a relatively sharp ramp-angle at depth. A 3D transpressive flow affected mylonites locally near the fault, but their shear direction remained parallel to plate motion, ruling out ductile 'extrusion' as an important process in this orogen. Outside the mylonite zone, late Cenozoic shortening is inferred to be modest (30-40%), as measured from deformation of younger biotite grains. Oblique collision is dominated by translation on the Alpine Fault, and rocks migrate rapidly through the deforming zone, preventing the accumulation of large finite strains. Transpression may play a minor role in oblique collision. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Australia's rangelands are experiencing a post-productivist transition at a tempo comparable to Western Europe's, but in contexts that ensure marked divergence in impulses, actors, processes and outcomes. In Australia's most marginal lands, a flimsy mode of pastoral occupance is being displaced by renewed indigenous occupance, conservation and tourism, with significant changes in land ownership, property rights, investment sources and power relations, but also with structural problems arising from fugitive income streams. The sharp delineation between structurally coherent commodity-oriented regions and emerging amenity-oriented regions can provisionally be mapped at a national scale. A comparison of Australia with Western Europe indicates that three distinct but interconnected driving forces are propelling the rural transition, namely: agricultural overcapacity; the emergence of amenity-oriented uses; and changing societal values.
Resumo:
Contaminant transport in coastal aquifers is of increasing interest since, with the development of coastal areas, contaminants from surface sources may enter coastal aquifers and pollute the groundwater flow. Coastal groundwater flow is complicated because of the presence of a freshwater-saltwater diffusion zone and the tidal variation of sea level at the seaward end. This paper investigates experimentally the behaviour of contaminant plumes with different densities in an unconfined coastal aquifer. Experiments were performed in a flow tank filled with glass beads as the porous medium. Results show that the dense contaminant has a more diffusive front than the less dense one in the seaward direction towards the coastline. The plume becomes more diffusive when it travels closer to the saltwater interface. On the contrary, the less dense contaminant presents a relatively sharp outline. It tends to migrate in the upper portion of the aquifer and exits in a concentrated manner over a small discharge area at the coastline, not further seaward under the sea. Non-dimensional parameters show that instabilities occur in our experiments for a density difference of 1.2% or larger between the contaminant and the ambient water. The experimental results provide guidance for field monitoring and numerical modelling. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents a new approach to the LU decomposition method for the simulation of stationary and ergodic random fields. The approach overcomes the size limitations of LU and is suitable for any size simulation. The proposed approach can facilitate fast updating of generated realizations with new data, when appropriate, without repeating the full simulation process. Based on a novel column partitioning of the L matrix, expressed in terms of successive conditional covariance matrices, the approach presented here demonstrates that LU simulation is equivalent to the successive solution of kriging residual estimates plus random terms. Consequently, it can be used for the LU decomposition of matrices of any size. The simulation approach is termed conditional simulation by successive residuals as at each step, a small set (group) of random variables is simulated with a LU decomposition of a matrix of updated conditional covariance of residuals. The simulated group is then used to estimate residuals without the need to solve large systems of equations.
Resumo:
In this paper the diffusion and flow of carbon tetrachloride, benzene and n-hexane through a commercial activated carbon is studied by a differential permeation method. The range of pressure is covered from very low pressure to a pressure range where significant capillary condensation occurs. Helium as a non-adsorbing gas is used to determine the characteristics of the porous medium. For adsorbing gases and vapors, the motion of adsorbed molecules in small pores gives rise to a sharp increase in permeability at very low pressures. The interplay between a decreasing behavior in permeability due to the saturation of small pores with adsorbed molecules and an increasing behavior due to viscous flow in larger pores with pressure could lead to a minimum in the plot of total permeability versus pressure. This phenomenon is observed for n-hexane at 30degreesC. At relative pressure of 0.1-0.8 where the gaseous viscous flow dominates, the permeability is a linear function of pressure. Since activated carbon has a wide pore size distribution, the mobility mechanism of these adsorbed molecules is different from pore to pore. In very small pores where adsorbate molecules fill the pore the permeability decreases with an increase in pressure, while in intermediate pores the permeability of such transport increases with pressure due to the increasing build-up of layers of adsorbed molecules. For even larger pores, the transport is mostly due to diffusion and flow of free molecules, which gives rise to linear permeability with respect to pressure. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Anew thermodynamic approach has been developed in this paper to analyze adsorption in slitlike pores. The equilibrium is described by two thermodynamic conditions: the Helmholtz free energy must be minimal, and the grand potential functional at that minimum must be negative. This approach has led to local isotherms that describe adsorption in the form of a single layer or two layers near the pore walls. In narrow pores local isotherms have one step that could be either very sharp but continuous or discontinuous benchlike for a definite range of pore width. The latter reflects a so-called 0 --> 1 monolayer transition. In relatively wide pores, local isotherms have two steps, of which the first step corresponds to the appearance of two layers near the pore walls, while the second step corresponds to the filling of the space between these layers. All features of local isotherms are in agreement with the results obtained from the density functional theory and Monte Carlo simulations. The approach is used for determining pore size distributions of carbon materials. We illustrate this with the benzene adsorption data on activated carbon at 20, 50, and 80 degreesC, argon adsorption on activated carbon Norit ROX at 87.3 K, and nitrogen adsorption on activated carbon Norit R1 at 77.3 K.
Resumo:
Complete fetal bladder outlet obstruction was first diagnosed in a fetus at 13.5 weeks. After sequential vesico-centesis had shown good renal function, a vesico-amniotic shunt was inserted at 17 weeks with a Rodeck catheter. The procedure was successful and amniotic fluid volume re-accumulated to normal levels. A detailed scan at 20 weeks showed that the distal free end of the catheter was wound round the left fetal thigh. As the fetus grew, there was progressive constriction of the fetal thigh by the catheter. By 29 weeks, Doppler blood flow changes to the left leg were apparent. Fetoscopic surgery was performed at 30 weeks to release the constriction. The catheter was divided successfully, but the divided end of the shunt subsequently retracted into the fetal abdomen, producing urinary ascites, bilateral hydroureter and hydronephrosis. The baby was delivered at 31.5 weeks in good condition. Endoscopic resection of anterior and posterior urethral valves was performed at 6 months of age. At 2 years, the child has normal renal function, growth parameters and developmental milestones. Mild indentation of the left thigh was still apparent, although there was no functional impairment. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
PRL and placental lactogen (PL) play key roles in maintaining the rodent corpus luteum through pregnancy. Suppressors of cytokine signaling (SOCS) have been shown to decrease cell sensitivity to cytokines, including PRL, and so here we have addressed the issue of whether luteolysis induced by prostaglandin F-2alpha (PGF(2alpha)) might up-regulate SOCS proteins to inhibit PRL signaling. In d 19 pregnant rats, cloprostenol, a PGF(2alpha) analog, rapidly induced transcripts for SOCS-3 and, to a lesser extent, SOCS-1. We also found increased SOCS-3 protein in the ovary by immunoblot and in the corpus luteum by immunohistochemistry. Increased SOCS-3 expression was preceded by an increase in STAT3 tyrosine phosphorylation 10 min after cloprostenol injection and was maintained for 4 h, as determined by gel shift and immunohistochemistry. Induction of SOCS-3 was accompanied by a sharp decrease in active STAT5, as determined by gel-shift assay and by loss of nuclear localized STAT5. Four hours after cloprostenol administration, the corpus luteum was refractory to stimulation of STAT5 by PRL administration, and this was not due to down-regulation of PRL receptor. Therefore, induction of SOCS-3 by PGF(2alpha) may be an important element in the initiation of luteolysis via rapid suppression of luteotropic support from PL.
Resumo:
Research reports prepared by three Australian preservice teachers--Paula Shaw, Chris Sharp and Scott McDonald--undertaking their teacher education practicum in Canada, form the basis of this paper. The reports provide critical insights into three aspects of education for young people in both Canada and Australia. They also provide critical insight into the ways in which a practicum research project, along with the opportunities afforded through an international experience, enabled the preservice teachers to broaden their understanding of the curriculum for young people, of issues relevant to the diverse needs of young people, and of themselves and their priorities as teachers. The preservice teachers investigated three topics: attempts to reduce homophobia in schools; the presence or absence of Aboriginal content in the school curricula in British Columbia and Queensland; and "schools-within-schools" as a means to meet the needs of diverse student populations. Linda Farr Darling from the University of British Columbia provides a response to the three reports.
Resumo:
A number of authors concerned with the analysis of rock jointing have used the idea that the joint areal or diametral distribution can be linked to the trace length distribution through a theorem attributed to Crofton. This brief paper seeks to demonstrate why Crofton's theorem need not be used to link moments of the trace length distribution captured by scan line or areal mapping to the moments of the diametral distribution of joints represented as disks and that it is incorrect to do so. The valid relationships for areal or scan line mapping between all the moments of the trace length distribution and those of the joint size distribution for joints modeled as disks are recalled and compared with those that might be applied were Crofton's theorem assumed to apply. For areal mapping, the relationship is fortuitously correct but incorrect for scan line mapping.
Resumo:
The use of thermodilution and other methods of monitoring in dogs during surgery and critical care was evaluated. Six Greyhounds were anaesthetised and then instrumented by placing a thermodilution catheter into the pulmonary artery via the jugular vein. A catheter in the dorsal pedal artery also permitted direct measurement of arterial pressures. Core body temperature (degreesC) and central venous pressure (mmHg) were measured, while cardiac output (mL/min/kg) and mean arterial pressure (mmHg) were calculated. A mid-line surgical incision was performed and the physiological parameters were monitored for a total of two hours. All physiological parameters generally declined, although significant increases (P<0.05) were noted for cardiac output following surgical incision. Central venous pressure was maintained at approximately 0mmHg by controlling an infusion of sterile saline. Core body temperature decreased from 37.1+/-0.6degreesC (once instrumented) to 36.6+/-0.60degreesC (at the end of the study), despite warming using heating pads. Physiological parameters indicative of patient viability will generally decline during surgery without intervention. This study describes an approach that can be undertaken in veterinary hospitals to accurately monitor vital signs in surgical and critical care patients.
Resumo:
A research program on atmospheric boundary layer processes and local wind regimes in complex terrain was conducted in the vicinity of Lake Tekapo in the southern Alps of New Zealand, during two 1-month field campaigns in 1997 and 1999. The effects of the interaction of thermal and dynamic forcing were of specific interest, with a particular focus on the interaction of thermal forcing of differing scales. The rationale and objectives of the field and modeling program are described, along with the methodology used to achieve them. Specific research aims include improved knowledge of the role of surface forcing associated with varying energy balances across heterogeneous terrain, thermal influences on boundary layer and local wind development, and dynamic influences of the terrain through channeling effects. Data were collected using a network of surface meteorological and energy balance stations, radiosonde and pilot balloon soundings, tethered balloon and kite-based systems, sodar, and an instrumented light aircraft. These data are being used to investigate the energetics of surface heat fluxes, the effects of localized heating/cooling and advective processes on atmospheric boundary layer development, and dynamic channeling. A complementary program of numerical modeling includes application of the Regional Atmospheric Modeling System (RAMS) to case studies characterizing typical boundary layer structures and airflow patterns observed around Lake Tekapo. Some initial results derived from the special observation periods are used to illustrate progress made to date. In spite of the difficulties involved in obtaining good data and undertaking modeling experiments in such complex terrain, initial results show that surface thermal heterogeneity has a significant influence on local atmospheric structure and wind fields in the vicinity of the lake. This influence occurs particularly in the morning. However, dynamic channeling effects and the larger-scale thermal effect of the mountain region frequently override these more local features later in the day.