882 resultados para IN-CONTROL TIMES
Resumo:
A genetic polymorphism of the beta 2-glycoprotein I (beta 2-GPI) is recognized by antiphospholipid antibodies (aPL) and may even play a role in the development of antiphospholipid syndrome (APS). The objectives of this study were to determine a Val/Leu SNP at position 247 of the beta 2-GPI gene in Brazilian patients with APS and to compare these data with clinical and laboratory manifestations. Polymorphism assignment was performed by PCR followed by Rsa I restriction endonuclease. The titration of anti-beta 2-GPI antibodies was detected by ELISA. The results showed significantly higher frequencies of the V-encoding allele and the homozygous VV genotype in patients with APS than in control subjects (OR = 1.781, P = 0.0068; and OR = 6.413, P < 0.0001, respectively). The frequency of this genotype was also significantly higher in patients with arterial and venous thrombosis than in the control group (52% and 44%, respectively, versus 13%). Anti-beta 2-GPI-positive patients had significantly higher frequencies of the VV genotype than the controls subjects (OR = 8.179, P < 0.0001). These results suggest that the V-encoding allele and the homozygous VV genotype at position 247 of the beta 2-GPI gene may play a role in the generation of anomalous beta 2-GPI, with consequent auto-antibody production, and in phenotype expression of arterial and venous thrombosis in APS patients.
Resumo:
Periapical chronic lesion formation involves activation of the immune response and alveolar bone resorption around the tooth apex. However, the overall roles of T helper type 1 (Th1), Th2, and T-regulatory cell (Treg) responses and osteoclast regulatory factors in periapical cysts and granulomas have not been fully determined. This study aimed to investigate whether different forms of apical periodontitis, namely cysts and granulomas, show different balances of Th1, Th2 regulators, Treg markers, and factors involved in osteoclast chemotaxis and activation. Gene expression of these factors was assessed using quantitative real-time polymerase chain reaction, in samples obtained from healthy gingiva (n = 8), periapical granulomas (n = 20), and cysts (n = 10). Periapical cysts exhibited a greater expression of GATA-3, while a greater expression of T-bet, Foxp3, and interleukin-10 (IL-10) was seen in granulomas. The expression of interferon-gamma, IL-4, and transforming growth factor-beta was similar in both lesions. Regarding osteoclastic factors, while the expression of SDF-1 alpha/CXCL12 and CCR1 was higher in cysts, the expression of RANKL was significantly higher in granulomas. Both lesions exhibited similar expression of CXCR4, CK beta 8/CCL23, and osteoprotegerin, which were significantly higher than in control. Our results showed a predominance of osteoclast activity in granulomas that was correlated with the Th1 response. The concomitant expression of Treg cell markers suggests a possible suppression of the Th1 response in granulomas. On the other hand, in cysts the Th2 activity is augmented. The mechanisms of periradicular lesion development are still not fully understood but the imbalance of immune and osteoclastic cell activity in cysts and granulomas seems to be critically regulated by Treg cells.
Resumo:
Molkov YI, Zoccal DB, Moraes DJ, Paton JF, Machado BH, Rybak IA. Intermittent hypoxia-induced sensitization of central chemoreceptors contributes to sympathetic nerve activity during late expiration in rats. J Neurophysiol 105: 3080-3091, 2011. First published April 6, 2011; doi:10.1152/jn.00070.2011.-Hypertension elicited by chronic intermittent hypoxia (CIH) is associated with elevated activity of the thoracic sympathetic nerve (tSN) that exhibits an enhanced respiratory modulation reflecting a strengthened interaction between respiratory and sympathetic networks within the brain stem. Expiration is a passive process except for special metabolic conditions such as hypercapnia, when it becomes active through phasic excitation of abdominal motor nerves (AbN) in late expiration. An increase in CO(2) evokes late-expiratory (late-E) discharges phase-locked to phrenic bursts with the frequency increasing quantally as hypercapnia increases. In rats exposed to CIH, the late-E discharges synchronized in AbN and tSN emerge in normocapnia. To elucidate the possible neural mechanisms underlying these phenomena, we extended our computational model of the brain stem respiratory network by incorporating a population of presympathetic neurons in the rostral ventrolateral medulla that received inputs from the pons, medullary respiratory compartments, and retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG). Our simulations proposed that CIH conditioning increases the CO(2) sensitivity of RTN/pFRG neurons, causing a reduction in both the CO(2) threshold for emerging the late-E activity in AbN and tSN and the hypocapnic threshold for apnea. Using the in situ rat preparation, we have confirmed that CIH-conditioned rats under normal conditions exhibit synchronized late-E discharges in AbN and tSN similar to those observed in control rats during hypercapnia. Moreover, the hypocapnic threshold for apnea was significantly lowered in CIH-conditioned rats relative to that in control rats. We conclude that CIH may sensitize central chemoreception and that this significantly contributes to the neural impetus for generation of sympathetic activity and hypertension.
Resumo:
Background Polycystic ovary syndrome (PCOS) is associated with adverse metabolic effects. Some cardiovascular disease (CVD) risk markers are increased in women with PCOS. However, early markers of atherosclerosis are also associated with obesity and insulin resistance, which are related to PCOS. These markers may result either directly from PCOS or indirectly as a consequence of the comorbidities associated with the syndrome. Context To assess the presence of early CVD markers in young, nonobese women with PCOS. Patients Forty women with PCOS and 50 healthy women with regular menstrual cycles, matched for age and body mass index (BMI). Measurements The following CVD markers were assessed by ultrasonography: common carotid artery (CCA) stiffness index (beta), distensibility and intima-media thickness (IMT), and brachial artery flow-mediated dilatation (FMD). Inflammatory markers, including interleukin (IL)-6, tumour necrosis factor (TNF)-alpha, homocysteine, C-reactive protein (CRP), glycaemia, lipid profile and insulin, were also assessed. Results CCA beta was higher in PCOS than in control women (3 center dot 72 +/- 0 center dot 96 vs. 3 center dot 36 +/- 0 center dot 96, P = 0 center dot 04) and CCA distensibility was lower (0 center dot 31 +/- 0 center dot 08 vs. 0 center dot 35 +/- 0 center dot 09 mmHg(-1), P = 0 center dot 02). Waist circumference, total testosterone and the Free Androgen Index (FAI) were higher in PCOS patients than in controls (78 center dot 2 +/- 10 center dot 0 vs. 71 center dot 5 +/- 7 center dot 2 cm, P = 0 center dot 001; 88 center dot 1 +/- 32 center dot 4 vs. 57 center dot 1 +/- 21 center dot 2 ng/dl, P < 0 center dot 01; 12 center dot 7 +/- 15 center dot 7%vs. 4 center dot 7 +/- 2 center dot 3%, P < 0 center dot 01, respectively), while SHBG was reduced (37 center dot 9 +/- 19 center dot 1 vs. 47 center dot 8 +/- 18 center dot 3 nmol/l, P = 0 center dot 01). The remaining variables did not differ between the groups. Conclusions Young women with PCOS exhibit changes in vascular elasticity even in the absence of classical risk factors for CVD, such as hypertension and obesity.
Resumo:
Background The treatment and prognosis of nasal polyposis (NP) may be influenced by transcription factors, but their expression is poorly understood. Objective To determine the expression of transcription factors [(nuclear factor-kappa B) NF-kappa B and (activator protein) AP-1], cytokines [IL-1 beta, TNF-alpha and (granulocytes and macrophage colony-stimulating factor) GM-CSF], growth factor (b-FGF), chemokine (eotaxin-2) and adhesion molecule (ICAM-1) in NP in comparison with nasal mucosa controls. Methods Cross-sectional study. Twenty biopsies of nasal polyps were compared with eight middle turbinate biopsies. p65, c-Fos, IL-1 beta, TNF-alpha, ICAM-1, b-FGF, eotaxin-2 and GM-CSF were analysed through RQ-PCR, and p65 and c-Fos were also analysed through Western blotting. Results NF-kappa B expression was increased in patients with NP when compared with control mucosa (P < 0.05), whereas AP-1 expression did not differ significantly between groups. Expressions of IL-1 beta, eotaxin-2 and b-FGF were also increased in patients with NP compared with controls (P < 0.05). Conclusions The transcription factor NF-kappa B is more expressed in NP than in control mucosa. This is important in NP because NF-kappa B can induce the transcription of cytokines, chemokines and adhesion molecules, which play an important role in the inflammatory process. Moreover, transcription factors influence the response to corticosteroids, which are the basis of NP treatment. Transcription factor AP-1 does not seem to have a significant role in the pathological process.
Resumo:
Neural maturation involves diverse interaction and signaling mechanisms that are essential to the development of the nervous system. However, little is known about the development of neurons in heterotopic brain tissue in the lung, a rare abnormality observed in malformed babies and fetuses. The aim of this study was to identify the neurons and to investigate their maturation in experimental brain tissue heterotopia during fetal and neonatal periods. The fetuses from 24 pregnant female Swiss mice were used to induce brain tissue heterotopia on the 15th gestational day. Briefly, the brain of one fetus of each dam was extracted, disaggregated, and injected into the right hemithorax of siblings. Six of these fetuses with pulmonary brain tissue implantation were collected on the 18th gestational day (group E18), and six others were collected on the 8th postnatal day (group P8). The brain of each fetus from dams not submitted to any experimental procedure was collected on the 18th gestational day (group CE18) and on the 8th postnatal day (group CP8) to serve as a control for neuronal quantitation and maturation. Immunohistochemical staining of NeuN was used to assess neuron quantity and maturation. The NeuN labeling index was greater in the postnatal period than in the fetal period for the experimental and control groups (138 > E18 and CP8 > CE18), although there were fewer neurons in experimental than in control groups (P8 < CP8 and El 8 < CE1 8) (P < 0.005). These results indicate that fetal neuroblasts/neurons not only survive a dramatic event such as mechanical disaggregation, in the same way as it happens in human cases, but also they retain their development in heterotopia, irrespective of local tissue influences.
Resumo:
The prevalence of cigarette smoking (CS) is increased among obese subjects, who are susceptible to develop nonalcoholic fatty liver disease (NAFLD). We investigated the hepatic effects of CS in control and obese rats. Control and obese Zucker rats were divided into smokers and nonsmokers (n = 12 per group). Smoker rats were exposed to 2 cigarettes/day, 5 days/week for 4 weeks. The effects of CS were assessed by biochemical analysis, hepatic histological examination, immunohistochemistry, and gene expression analysis. Phosphorylation of AKT and extracellular signal-regulated kinase (ERK) and quantification of carbonylated proteins were assessed by western blotting. As expected, obese rats showed hypercholesterolemia, insulin resistance, and histological features of NAFLD. Smoking did not modify the lipidic or glucidic serum profiles. Smoking increased alanine aminotransferase serum levels and the degree of liver injury in obese rats, whereas it only induced minor changes in control rats. Importantly, CS increased the histological severity of NAFLD in obese rats. We also explored the potential mechanisms involved in the deleterious effects of CS. Smoking increased the degree of oxidative stress and hepatocellular apoptosis in obese rats, but not in controls. Similarly, smoking increased the hepatic expression of tissue inhibitor of metalloproteinase-1 and procollagen-alpha2(I) in obese rats, but not in controls. Finally, smoking regulated ERK and AKT phosphorylation. The deleterious effects of CS were not observed after a short exposure (5 days). Conclusion: CS causes oxidative stress and worsens the severity of NAFLD in obese rats. Further studies should assess whether this finding also occurs in patients with obesity and NAFLD. (HEPATOLOGY 2010;51:1567-1576.)
Resumo:
Ticks deposit saliva at the site of their attachment to a host in order to inhibit haemostasis, inflammation and innate and adaptive immune responses. The anti-haemostatic properties of tick saliva have been described by many studies, but few show that tick infestations or its anti-haemostatic components exert systemic effects in vivo. In the present study, we extended these observations and show that, compared with normal skin, bovine hosts that are genetically susceptible to tick infestations present an increase in the clotting time of blood collected from the immediate vicinity of haemorrhagic feeding pools in skin infested with different developmental stages of Rhipicepahlus microplus; conversely, we determined that clotting time of tick-infested skin from genetically resistant bovines was shorter than that of normal skin. Coagulation and inflammation have many components in common and we determined that in resistant bovines, eosinophils and basophils, which are known to contain tissue factor, are recruited in greater numbers to the inflammatory site of tick bites than in susceptible hosts. Finally, we correlated the observed differences in clotting times with the expression profiles of transcripts for putative anti-haemostatic proteins in different developmental stages of R. microplus fed on genetically susceptible and resistant hosts: we determined that transcripts coding for proteins similar to these molecules are overrepresented in salivary glands from nymphs and males fed on susceptible bovines. Our data indicate that ticks are able to modulate their host`s local haemostatic reactions. In the resistant phenotype, larger amounts of inflammatory cells are recruited and expression of anti-coagulant molecules is decreased tick salivary glands, features that can hamper the tick`s blood meal. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Chronic and excessive alcohol consumption has been related to an increased risk of several cancers, including that of the liver; however, studies in animal models have yet to conclusively determine whether ethanol acts as a tumor promoter in hepatic tumorigenesis. We examined whether prolonged alcohol consumption could act as a hepatic tumor promoter after initiation by diethylnitrosamine (DEN) in a rat model. Male Sprague-Dawley rats were injected with 20 mg DEN/kg body weight 1 wk before introduction of either an ethanol liquid diet or an isoenergic control liquid diet. Hepatic pathological lesions, hepatocyte proliferation, apoptosis, PPAR alpha and PPAR gamma, and plasma insulin-like growth factor 1 IGF-1) levels were assessed after 6 and 10 mo. Mean body and liver weights, plasma IGF-1 concentration, hepatic expressions of proliferating cellular nuclear antigen and Ki-67, and cyclin D1 in ethanol-fed rats were all significantly lower after 10 mo of treatment compared with control rats. In addition, levels of hepatic PPAR gamma protein, not PPAR alpha, were significantly higher in the ethanol-fed rats after prolonged treatment. Although ethanol feeding also resulted in significantly fewer altered hepatic foci, hepatocellular adenoma was detected in ethanol-fed rats at 10 mo, but not in control rats given the same dose of DEN. Together, these results indicate that chronic, excessive ethanol consumption impairs normal hepatocyte proliferation, which is associated with reduced IGF-1 levels, but promotes hepatic carcinogenesis. J. Nutr. 141: 1049-1055, 2011.
Resumo:
Quercetin has antioxidants properties which may increase nitric oxide (NO) bioavailability. However, the effects of quercetin on NO status have been poorly studied. We evaluated whether quercetin improves the plasma levels of NO metabolites in two-kidney one-clip (2K1C) hypertensive rats and assessed its effect on endothelial function. Sham-operated and 2K1C rats were treated with quercetin (10 mg(-1) kg(-1) day(-1) by gavage) or vehicle for 3 weeks. Systolic blood pressure (SBP) was monitored weekly. Vascular responses to acetylcholine (Ach) and sodium nitroprusside (SNP) were assessed in hindquarter vascular bed. Plasma nitrate levels were assessed by Griess reagent and plasma nitrite and nitroso species (S, N-nitroso species) were assessed by ozone- based chemiluminescence. Aortic NADPH oxidase activity and superoxide production were evaluated. While quercetin had no effects in control normotensive rats (P > 0.05), it significantly reduced SBP in 2K1C rats (P < 0.05). At the end of treatment, plasma nitrate levels were similar in all experimental groups (P > 0.05). However, plasma nitrite and the nitroso species levels were significantly lower in 2K1C rats when compared with controls (P < 0.05). Quercetin treatment restored plasma nitrite and nitroso species levels to those found in the sham-vehicle group (P < 0.05). While quercetin treatment induced no significant changes in responses to SNP (P > 0.05), it restored the vascular responses to Ach. Quercetin significantly attenuated 2K1C-hypertension-induced increases in NADPH oxidase activity and vascular superoxide production (P < 0.05). These results suggest that the antihypertensive effects of quercetin were associated with increased NO formation and improved endothelial function, which probably result from its antioxidant effects.
Resumo:
This study was undertaken to test whether the structural remodelling of pulmonary parenchyma can be sequentially altered in a model and method that demonstrate the progression of the disease and result in remodelling within the lungs that is typical of idiopathic pulmonary fibrosis. Three groups of mice were studied: (i) animals that received 3-5-di-tert-butyl-4-hydroxytoluene (BHT) and were killed after 2 weeks (early BHT = 9); (ii) animals that received BHT and were killed after 4 weeks (late BHT = 11); (iii) animals that received corn oil solution (control = 10). The mice were placed in a ventilated Plexiglas chamber with a mixture of pure humidified oxygen and compressed air. Lung histological sections underwent haematoxylin-eosin, immunohistochemistry (epithelial, endothelial and immune cells) and specific staining (collagen/elastic fibres) methods for morphometric analysis. When compared with the control group, early BHT and late BHT groups showed significant decrease of type II pneumocytes, lower vascular density in both and higher endothelial activity. CD4 was increased in late BHT compared with early and control groups, while CD8, macrophage and neutrophil cells were more prominent only in early BHT. The collagenous fibre density were significantly higher only in late BHT, whereas elastic fibre content in late BHT was lower than that in control group. We conclude that the BHT experimental model is pathologically very similar to human usual interstitial pneumonia. This feature is important in the identification of animal models of idiopathic pulmonary fibrosis that can accurately reflect the pathogenesis and progression of the human disease.
Resumo:
Background. The molecular pathogenesis of different sensitivities of the renal proximal and distal tubular cell populations to ischemic injury, including ischemia-reperfusion (IR)-induced oxidative stress, is not well-defined. An in vitro model of oxidative stress was used to compare the survival of distal [Madin-Darby canine kidney (MDCK)] and proximal [human kidney-2 (HK-2)] renal tubular epithelial cells, and to analyze for links between induced cell death and expression and localization of selected members of the Bcl-2 gene family (anti-apoptotic Bcl-2 and Bcl-X-L, pro-apoptotic Bax and Bad), Methods. Cells were treated with 1 mmol/L hydrogen peroxide (H2O2) Or were grown in control medium for 24 hours. Cell death (apoptosis) was quantitated using defined morphological criteria. DNA gel electrophoresis was used for biochemical identification. Protein expression levels and cellular localization of the selected Bcl-2 family proteins were analyzed (West ern immunoblots, densitometry, immunoelectron microscopy). Results. Apoptosis was minimal in control cultures and was greatest in treated proximal cell cultures (16.93 +/- 4.18% apoptosis) compared with treated distal cell cultures (2.28 +/- 0.85% apoptosis, P < 0.001). Endogenous expression of Bcl-X-L and Bax, but not Bcl-2 or Bad, was identified in control distal cells, Bcl-X-L and Bax had nonsignificant increases (P > 0.05) in these cells. Bcl-2, Bax, and Bcl-X-L, but not Bad, were endogenously expressed in control proximal cells. Bcl-X-L was significantly decreased in treated proximal cultures (P < 0.05), with Bas and Bcl-2 having nonsignificant increases (P > 0.05). Immunoelectron microscopy localization indicated that control and treated hut surviving proximal cells had similar cytosolic and membrane localization of the Bcl-2 proteins. In comparison, surviving cells in the treated distal cultures showed translocation of Bcl-X-L from cytosol to the mitochondria after treatment with H2O2, a result that was confirmed using cell fractionation and analysis of Bcl-XL expression levels of the membrane and cytosol proteins. Bax remained distributed evenly throughout the surviving distal cells, without particular attachment to any cellular organelle. Conclusion. The results indicate that in this in vitro model, the increased survival of distal compared with proximal tubular cells after oxidative stress is best explained by the decreased expression of anti-apoptotic Bcl-X-L in proximal cells, as well as translocation of Bcl-X-L protein to mitochondria within the surviving distal cells.
Resumo:
Introduction The objective of the present study was to assess the craniocervical posture and the positioning of the hyoid bone in children with asthma who are mouth breathers compared to non-asthma controls. Methods The study was conducted on 56 children, 28 of them with mild (n = 15) and moderate (n = 13) asthma (14 girls aged 10 79 +/- 1 31 years and 14 boys aged 9 79 +/- 1.12 years), matched for sex, height, weight and age with 28 non-asthma children who are not mouth breathers The sample size was calculated considering a confidence interval of 95% and a prevalence of 4% of asthma in Latin America. Eighteen variables were analyzed in two radiographs (latero-lateral teleradiography and lateral cervical spine radiography), both obtained with the head in a natural position The independent t-test was used to compare means values and the chi-square test to compare percentage values (p < 0 05) Intraclass correlation coefficient (ICC) was used to verify reliability. Results. The Craniovertebral Angle (CVA) was found to be significantly smaller in asthma than in control children (106.38 +/- 766 vs. 111 21 +/- 7.40. p = 0 02) and the frequency of asthma children with an absent or inverted hyoid triangle was found to be significantly higher compared to non-asthma children (36% vs 7%, p = 0.0001). The values of the inclination angles of the superior cervical spine in relation to the horizontal plane were significantly higher in moderate than in mild asthma children (CVT/Hor 85 10 +/- 725 vs. 90 92 +/- 6.69, p = 0 04 and C1/Hor. 80 93 +/- 5.56 vs 85 00 +/- 4 20, p = 0 04) Conclusions These findings revealed that asthma children presented higher head extension and a higher frequency of changes in hyoid bone position compared to non-asthma children and that greater the asthma severity greater the extension of the upper cervical spine. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Immune challenges during neonatal period may permanently program immune responses later in life, including endotoxin fever. We tested the hypothesis that neonatal endotoxin exposure affects stress fever in adult rats. In control rats (treated with saline as neonates; nSal) body temperature peaked similar to 1.5 degrees C during open-field stress, whereas in rats exposed to endotoxin (lipopolysaccharide, LPS) as neonates (nLPS) stress fever was significantly attenuated. Following stress, plasma corticosterone levels significantly increased from 74.29 +/- 7.05 ng ml(-1) to 226.29 +/- 9.87 ng ml(-1) in nSal rats, and from 83.43 +/- 10.31 ng ml(-1) to 324.7 +/- 36.87 ng ml(-1) in nLPS rats. Animals treated with LPS as neonates and adrenalectomized one week before experimentation no longer displayed the attenuated febrile response to stress. This attenuated stress fever caused by an increased corticosterone secretion is likely to be linked to an inhibitory effect of glucocorticoids on cyclooxygenase activity/PGE(2) production in preoptic/anteroventral third ventricular region (AV3V) since stress failed to cause a significant increase in PGE(2) in nLPS rats, and this effect was reverted by adrenalectomy. Altogether, the present results indicate that endogenous glucocorticoids are key modulators of the attenuated stress fever in adult rats treated with LPS as neonates, and they act downregulating PGE(2) production in AV3V. Moreover, our findings also support the notion that neonatal immune stimulus affects programming of stress responses during adulthood, despite the fact that inflammation and stress are two distinct processes mediated largely by different neurobiological mechanisms. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background. Potassium (K) deficiency (KD) and/or hypokalemia have been associated with disturbances of phosphate metabolism The purpose of the present study was to determine the cellular mechanisms that mediate the impairment of renal proximal tubular Na/Pi cotransport in a model of K deficiency in the rat. Methods. K deficiency in the rat was achieved by feeding rats a K-deficient diet for seven days. which resulted in a marked decrease in serum and tissue K content. Results. K deficiency resulted in a marked increase in urinary Pi excretion and a decrease in the V-max of brush-border membrane (BBM) Na/Pi cotransport activity (1943 95 in control vs. 1183 +/- 99 pmol/5 sec/mg BBM protein in K deficiency. P < 0.02). Surprisingly. the decrease in Na/Pi cotransport activity was associated with increases in the abundance of type I (NaPi-1). and type II (NaPi-2) and type III (Glvr-1) Na/Pi protein. The decrease in Na/Pi transport was associated with significant alterations in BBM lipid composition, including increases in sphingomyelin. glucosylceramide. and ganglioside GM, content and a decrease in BBM lipid fluidity. Inhibition of glucosylceramide synthesis resulted in increases in BBM Na/Pi cotransport activity in control and K-deficient rats. The resultant Na/Pi cotransport activity in K-deficit nt rats was the same as in control rats (1148 +/- 52 in control + PDMP vs. 11.52 +/- 61 pmol/5 sec/mg BBM protein in K deficiency + PDMP). These changes in transport activity occurred independent of further changes in BBM NaPi-2 protein or renal cortical NaPi-2 mRNA abundance. Conclusion. K deficiency in the rat causes inhibition of renal Na/Pi cotransport activity by post-translational mechanisms that are mediated in part through alterations in glucosylceramide content and membrane lipid dynamics.