986 resultados para Hypertrophy, left ventricular
Resumo:
Serial reduction in scar thickness has been shown in animal models. We sought whether this reduction in scar thickness may be a result of dilatation of the left ventricle (LV) with stretching and thinning of the wall. Contrast enhanced magnetic resonance imaging (CMRI) was performed to delineate radial scar thickness in 25 patients (age 63±10, 21 men) after myocardial infarction. The LV was divided into 16 segts and the absolute radial scar thickness (ST) and percentage scar to total wall thickness (%ST) were measured. Regional end diastolic (EDV) and end systolic volumes (ESV) of corresponding segments were measured on CMRI. All patients underwent revascularization and serial changes in ST, %ST, and regional volumes were assessed with a mean follow up of 15±5 months. CMRI identified a total of 93 scar segments. An increase in EDV or ESV was associated with a serial reduction inST(versusEDV, r =−0.3, p = 0.01; versusESV, r =−0.3, p = 0.005) and%ST(versusEDV, r =−0.2, p = 0.04; versus ESV, r =−0.3, p = 0.001). For segts associated with a positive increase in EDV (group I) or ESV (group II) there was a significant decrease in ST and %ST, but in those segts with stable EDV (group III) or ESV (group IV) there were no significant changes in ST and %ST (Table).
Resumo:
We sought to determine the relative impact of myocardial scar and viability on post-infarct left ventricular (LV) remodeling in medically-treated patients with LV dysfunction. Forty patients with chronic ischemic heart disease (age 64±9, EF 40±11%) underwent rest-redistribution Tl201 SPECT (scar = 50% transmural extent), A global index of scarring for each patient (CMR scar score) was calculated as the sum of transmural extent scores in all segts. LV end diastolic volumes (LVEDV) and LV end systolic volumes (LVESV) were measured by real-time threedimensional echo at baseline and median of 12 months follow-up. There was a significant positive correlation between change in LVEDV with number of scar segts by all three imaging techniques (LVEDV: SPECT scar, r = 0.62, p < 0.001; DbE scar, r = 0.57, p < 0.001; CMR scar, r = 0.52, p < 0.001) but change in LV volumes did not the correlate with number of viable segments. ROC curve analysis showed that remodeling (LVEDV> 15%) was predicted bySPECTscars(AUC= 0.79),DbEscars(AUC= 0.76),CMR scars (AUC= 0.70), and CMR scar score (AUC 0.72). There were no significant differences between any of the ROC curves (Z score
Resumo:
We sought to determine the relative impact of myocardial scar and viability on post-infarct left ventricular (LV) remodeling in medically-treated patients with LV dysfunction. Forty patients with chronic ischemic heart disease (age 64±9, EF 40±11%) underwent rest-redistribution Tl201 SPECT (scar = 50% transmural extent), A global index of scarring for each patient (CMR scar score) was calculated as the sum of transmural extent scores in all segts. LV end diastolic volumes (LVEDV) and LV end systolic volumes (LVESV) were measured by real-time threedimensional echo at baseline and median of 12 months follow-up. There was a significant positive correlation between change in LVEDV with number of scar segts by all three imaging techniques (LVEDV: SPECT scar, r = 0.62, p < 0.001; DbE scar, r = 0.57, p < 0.001; CMR scar, r = 0.52, p < 0.001) but change in LV volumes did not the correlate with number of viable segments. ROC curve analysis showed that remodeling (LVEDV> 15%) was predicted bySPECTscars(AUC= 0.79),DbEscars(AUC= 0.76),CMR scars (AUC= 0.70), and CMR scar score (AUC 0.72). There were no significant differences between any of the ROC curves (Z score
Resumo:
The first derivative of pressure over time (dP/dt) is a marker of left ventricular (LV) systolic function that can be assessed during cardiac catheterization and echocardiography. Radial artery dP/dt (Radial-dP/dt) has been proposed as a possible marker of LV systolic function (Nichols & O’Rourke, McDonald’s Blood Flow in Arteries) and we sought to test this hypothesis. Methods:We compared simultaneously recorded RadialdP/ dt (by high-fidelity tonometry) with LV-dP/dt (by highfidelity catheter and echocardiography parameters analogous to LV-dP/dt) in patients without aortic valve disease. In study 1, beat to beat Radial-dP/dt and LV-dP/dt were recorded at rest and during supine exercise in 12 males (aged 61±12 years) undergoing cardiac catheterization. In study 2, 2D-echocardiography and Radial-dP/dt were recorded in 59 patients (43 men; aged 64±10 years) at baseline and peak dobutamine-induced stress. Three measures at the basal septum were taken as being analogous to LV-dP/dt: (1) peak systolic strain rate, (2) strain rate (SR-dP/dt), and (3) tissue velocity during isovolumic contraction. Results: Study 1; there was a significant difference between resting LV-dP/dt (1461±383 mmHg/s) and Radial-dP/dt (1182±319 mmHg/s; P < 0.001), and a poor, but statistically significant, correlation between the variables (R2 = 0.006; P < 0.001) due to the high number of data points compared (n = 681). Similar results were observed during exercise. Study 2; there was a moderate association between baseline Radial-dP/dt and SRdP/ dt (R2 =−0.17; P < 0.01), but no significant relationship between Radial-dP/dt and all other echocardiographic measures analogous to LV-dP/dt at rest or peak stress (P > 0.05). Conclusion: The radial pressurewaveform is not a reliable marker of LV contractility.