940 resultados para Hypertrophy
Effect of Sodium Cyclamate on the Rat Fetal Exocrine Pancreas: a Karyometric and Stereological Study
Resumo:
The cyclamate, a sweetner substance derived from N-cyclo-hexyl-sulfamic acid, is largely utilized as a non-caloric artificial edulcorant in foods and beverages as well as in the pharmaceutical industry. The objective of this study was to evaluate karyometric and stereological alterations in the rat fetal pancreas resulting from the intraperitoneal administration of sodium cyclamate. The exocrine pancreas of ten fetuses of rats were evaluated, five treated and five controls chosen at random, in which five rats that received from the 10th to 14th days of pregnancy an intraperitoneal daily injection of sodium cyclamate at 60 mg/Kg of body weight during 5 days. At the 20th day of gestation, the animals were removed and weighed, as were their placentas; the length of the umbilical cords also were measured. After the laboratory processing, semi-seriated 6mm cuts stained with haematoxyline and cosine were performed. In seven karyometric parameters (major, minor, and medium diameters, volume, area, perimeter, and volume-area ratio), the increase was statistically significant in the treated group when compared with control group. Stereological parameters showed in the treated group a significant increase in the cellular volume and a significant reduction in the numerical cellular density. These results showed that the sodium cyclamate in pregnant rats led to retardation of fetal development and hypertrophy in the exocrine pancreas of the rat fetuses.
Resumo:
Pulmonary vascular remodeling is an important pathological feature of pulmonary hypertension, leading to increased pulmonary vascular resistance and reduced compliance. It involves thickening of all three layers of the blood vessel wall (due to hypertrophy and/or hyperplasia of the predominant cell type within each layer), as well as extracellular matrix deposition. Neomuscularisation of non-muscular arteries and formation of plexiform and neointimal lesions also occur. Stimuli responsible for remodeling involve transmural pressure, stretch, shear stress, hypoxia, various mediators [angiotensin II, endothelin (ET)-1, 5-hydroxytryptamine, growth factors, and inflammatory cytokines], increased serine elastase activity, and tenascin-C. In addition, there are reductions in the endothelium-derived antimitogenic substances, nitric oxide, and prostacyclin. Intracellular signalling mechanisms involved in pulmonary vascular remodeling include elevations in intracellular Ca2+ and activation of the phosphatidylinositol pathway, protein kinase C, and mitogen-activated protein kinase. In animal models of pulmonary hypertension, various drugs have been shown to attenuate pulmonary vascular remodeling. These include angiotensin-converting enzyme inhibitors, angiotensin receptor antagonists, ET receptor antagonists, ET-converting enzyme inhibitors, nitric oxide, phosphodiesterase 5 inhibitors, prostacyclin, Ca2+-channel antagonists, heparin, and serine elastase inhibitors. Inhibition of remodeling is generally accompanied by reductions in pulmonary artery pressure. The efficacy of some of the drugs varies, depending on the animal model of the disease. In view of the complexity of the remodeling process and the diverse aetiology of pulmonary hypertension in humans, it is to be anticipated that successful anti-remodeling therapy in the clinic will require a range of different drug options. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
In pulmonary hypertension, changes in pulmonary vascular structure and function contribute to the elevation in pulmonary artery pressure. The time-courses for changes in function, unlike structure, are not well characterised. Medial hypertrophy and neomuscularisation and reactivity to vasoactive agents were examined in parallel in main and intralobar pulmonary arteries and salt-perfused lungs from rats exposed to hypoxia (10% O-2) for 1 and 4 weeks (early and established pulmonary hypertension, respectively). After 1 week of hypoxia, in isolated main and intralobar arteries, contractions to 5-hydroxytryptamine and U46619 (thromboxane-mimetic) were increased whereas contractions to angiotensins I and II and relaxations to acetylcholine were reduced. These alterations varied quantitatively between main and intralobar arteries and, in many instances, regressed between 1 and 4 weeks. The alterations in reactivity did not necessarily link chronologically with alterations in structure. In perfused lungs, constrictor responses to acute alveolar hypoxia were unchanged after 1 week but were increased after 4 weeks, in conjunction with the neomuscularisation of distal alveolar arteries. The data suggest that in hypoxic pulmonary hypertension, the contribution of altered pulmonary vascular reactivity to the increase in pulmonary artery pressure may be particularly important in the early stages of the disease.
Resumo:
This study investigated whether pulmonary Vascular remodelling in hypoxic pulmonary hypertensive rats (10% oxygen; 4 weeks) could be prevented by treatment, during hypoxia, with amlodipine (IO mg/kg/day, p.o.), either alone or in combination with the angiotensin converting enzyme inhibitor, perindopril (30 mg/kg/day, p.o.). Medial thickening of pulmonary arteries (30-500 mum o.d.) was attenuated by amlodipine whereas it was totally prevented by the combination treatment (amlodipine plus perindopril); neomuscularisation of small alveolar arteries (assessed from critical closing pressure in isolated perfused lungs) was not affected. Pulmonary vascular resistance (isolated perfused lungs) was reduced by both treatment regimes but only combination treatment reduced right ventricular hypertrophy. Taus, amlodipine has anti-remodelling properties in pulmonary hypertensive rats. The finding that combining amlodipine with another anti-remodelling drug produced effects on vascular structure that were additive raises the question of whether combination therapy with two different anti-remodelling drugs may be of value in the treatment of patients with hypoxic (and possibly other forms of) pulmonary hypertension. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
1. Evidence from recent experimental and clinical studies suggests that excessive circulating levels of aldosterone can bring about adverse cardiovascular sequelae independent of the effects on blood pressure. Examples of these sequelae are the development of myocardial and vascular fibrosis in uninephrectomized, salt-loaded rats infused with mineralocorticoids and, in humans, an association of aldosterone with left ventricular hypertrophy, impaired diastolic and systolic function, salt and water retention causing aggravation of congestion in patients with established congestive cardiac failure (CCF), reduced vascular compliance and an increased risk of arrhythmias (resulting from intracardiac fibrosis, hypokalaemia, hypomagnesaemia, reduced baroreceptor sensitivity and potentiation of catecholamine effects). 2. These sequelae of aldosterone excess may contribute to the pathogenesis and worsen the prognosis of CCF and hypertension. 3. The heart and blood vessels may be capable of extra-adrenal aldosterone biosynthesis, raising the possibility that aldosterone may have paracrine or autocrine (and not just endocrine) effects on cardiovascular tissues. 4. The high prevalence of CCF, which is associated with secondary aldosteronism, and primary aldosteronism (PAL; recently recognized to be a much more common cause of hypertension than was previously thought) argue for an important role for aldosterone excess as a cause of cardiovascular injury. 5. The recognition of non-blood pressure-dependent adverse sequelae of aldosterone excess raises the question as to whether normotensive individuals with PAL, who have been detected as a result of genetic or biochemical screening among families with inherited forms of PAL, are at excess risk of cardiovascular events. 6. Provided that patients are carefully investigated in order to permit the appropriate selection of specific surgical (laparoscopic adrenalectomy for PAL that lateralizes on adrenal venous sampling) or medical (treatment with aldosterone antagonist medications) management and safety considerations for the use of aldosterone antagonists are kept in mind, the appreciation of a widening role for aldosterone in cardiovascular disease should provide a substantially better outlook for many patients with CCF and hypertension.
Resumo:
Purpose: To investigate the role of corneal endothelial surface enlargement in the chicken myopia model in inducing corneal endothelial changes. Methods: Lid suture was performed on one eye of 1-day-old cockerels. Five chickens were killed at 1 week, and four chickens killed at each of 3 weeks, 6 weeks, and 10 weeks postnatal. The endothelial morphology was obtained by flat mounting the endothelial surface and the subsequent digitisation. Comparisons were undertaken between the control unsutured eye and the lid-sutured eye endothelium, and between the central endothelial areas compared to the peripheral endothelial areas in both the myopic and the normal corneas. Calculation of the contribution to the endothelial change by hypertrophy and mitosis were calculated using Bahn's formula. Results: Total endothelial surface area increased significantly over time in the myopic model compared to control eyes but the mean cell area of endothelial cells remained the same for both the enlarged myopic endothelial surface area and in the normal controls. Sampling from the central and the peripheral corneal endothelial surface also disclosed no difference. The mean cell area did increase steadily with age but was the same for both normal and myopic corneas. Conclusions: It would appear that there are equal contributions from hypertrophy and mitosis in the myopic group and the normal corneal group with a slightly increasing trend towards mitotic activity in the myopic corneal endothelial layer.
Resumo:
Until recently, spironolactone was considered only as an antagonist at the aldosterone receptors of the epithelial cells of the kidney and was used clinically in the treatment of hyperaldosteronism and, occasionally, as a K+-sparing diuretic. The spironolactone renaissance started with the experimental finding that spironolactone reversed aldosterone-induced cardiac fibrosis by a cardiac action. Experimentally, spironolactone also has direct effects on blood vessels. Spironolactone reduces vascular fibrosis and injury, inhibits angiogenesis, reduces vascular tone and reduces portal hypertension. The rationale for the Randomized Aldactone Evaluation Study (RALES) of spironolactone in heart failure was that ‘aldosterone escape’ occurred through non-angiotensin II mechanisms. The RALES clinical trial was stopped early when it was shown that there was a 30% reduction in risk of death among the spironolactone patients. In RALES, spironolactone also reduced hospitalisation for worsening heart failure and improved the symptoms of heart failure. Other recent clinical trials have shown that spironolactone reduces cardiac and vascular collagen turnover, improves heart variability, reduces ventricular arrhythmias, improves endothelial dysfunction and dilates blood vessels in human heart failure and these effects probably all contribute to the increased survival in heart failure. Spironolactone may also be useful in the treatment of left ventricular hypertrophy, portal hypertension and cirrhosis. There have also been some recent small clinical trials of spironolactone as an anti-androgen showing potential in acne, hirsutism and precocious puberty.
Resumo:
Cardiovascular remodelling, defined as ventricular and vascular hypertrophy together with fibrosis, characterises hypertension following inhibition of the production of the endogenous vasodilator, nitric oxide (NO). This study has determined whether the cardiovascular remodelling following chronic NO synthase inhibition can e reversed by administration of the selective angiotensin II AT(1)-receptor antagonist, candesartan. Male Wistar rats were treated with L-nitroarginine methyl ester (L-NAME, 400 mg/l in drinking water) for eight weeks and with candesartan cilexetil (2 mg/kg/day by oral gavage) for the last four weeks. L-NAME-treated rats became hypertensive with systolic blood pressure increasing from 110 +/- 4 mmHg (control) to 170 +/- 10 mmHg. Rats developed left ventricular hypertrophy (control 1.70 +/- 0.06; L-NAME 2.10 +/- 0.04 mg/kg body wt) with markedly increased deposition of perivascular and interstitial collagen. Candesartan returned blood pressure, left ventricular weights and collagen deposition to control values. Echo cardiographic assessment showed concentric hypertrophy with an increased fractional shortening; this was reversed by candesartan treatment. Heart failure was not evident. In the isolated Langendorff heart, diastolic stiffness increased in L-NAME-treated rats while the rate of increase in pressure (+dP/dt) increased after eight weeks only; candesartan reduced collagen deposition and normalised +dP/dt. In isolated left ventricular papillary muscles, the potency (negative log EC50) of noradrenaline as a positive inotropic compound was unchanged, (control 6.56 +/- 0.14); maximal increase in force before ectopic beats was reduced from 5.0 +/- 0.4 mN to 2.0 +/- 0.2 mN. Noradrenaline potency as a vasoconstrictor in thoracic aortic rings was unchanged, but maximal contraction was markedly reduced from 25.2 +/- 2.0 mN to 3.0 +/- 0.3 mN; this was partially reversed by candesartan treatment. Thus, chronic inhibition of NO production with L-NAME induces hypertension, hypertrophy and fibrosis with increased toxicity and significant decreases in vascular responses to noradrenaline. These changes were at least partially reversible by treatment with candesartan, implying a significant role of AT(1)-receptors in L-NAME-induced cardiovascular changes.
Resumo:
Brain natriuretic peptide (BNP) is predominantly a cardiac ventricular hormone that promotes natriuresis and diuresis, inhibits the renin-anglotensin-aldosterone axis, and is a vasodilator. Plasma BNP levels are raised in essential hypertension, and more so in left ventricular (LV) hypertrophy and heart failure. Plasma BNP levels are also elevated in ischemic heart disease. Attempts have been made to use plasma BNP levels as a marker of LV dysfunction, but these have shown that plasma BNP levels are probably not sensitive enough to replace echocardiography in the diagnosis of LV dysfunction. Pericardial BNP or N-BNP may be more suitable markers of LV dysfunction. Plasma BNP levels are also elevated in right ventricular dysfunction, pregnancy-induced hypertension, aortic stenosis, age, subarachnoid hemorrhage, cardiac allograft rejection and cavopulmonary connection, and BNP may have an important pathophysiological role in some or all of these conditions. Clinical trials have demonstrated the natriuretic, diuretic and vasodilator effects, as well as inhibitory effects on renin and aldosterone of infused synthetic human BNP (nesiritide) in healthy humans. BNP infusion improves LV function in patients with congestive heart failure via a vasodilating and a prominent natriuretic effect. BNP infusion is useful for the treatment of decompensated congestive heart failure requiring hospitalization. The clinical potential of BNP is limited as it is a peptide and requires infusion. Drugs that modify the effects of BNP are furthering our understanding of the pathophysiological role and clinical potential of BNP. Increasing the effects of BNP may be a useful therapeutic approach in heart failure involving LV dysfunction. The levels of plasma BNP are increased by blockers, cardiac glycosides and vasopeptidase inhibitors, and this may contribute to the usefulness of these agents in heart failure. (C) 2001 Prous Science. All rights reserved.
Resumo:
To test the hypothesis that Vegf-B contributes to the pulmonary vascular remodelling, and the associated pulmonary hypertension, induced by exposure of mice to chronic hypoxia. Methods: Right ventricular systolic pressure, the ratio of right ventricle/[left ventricle+septum] (RV/[LV+S]) and the thickness of the media (relative to vessel diameter) of intralobar pulmonary arteries (o.d. 50-150 and 151-420 mum) were determined in Vegfb knockout mice (Vegfb(-/-); n=17) and corresponding wild-type mice (Vegfb(+/+); n=17) exposed to chronic hypoxia (10% oxygen) or housed in room air (normoxia) for 4 weeks. Results: In Vegfb(+/+) mice hypoxia caused (i) pulmonary hypertension (a 70% increase in right ventricular systolic pressure compared with normoxic Vegfb(+/+) mice; P
Resumo:
OBJECTIVES The goal of this study was to determine whether wall stress at rest and during stress could explain the influence of left ventricular (LV) morphology on the accuracy of dobutamine stress echocardiography (DSE). BACKGROUND The sensitivity of DSE appears to be reduced in patients with concentric remodeling, but the cause of this finding is unclear. METHODS We studied 161 patients without resting wall motion abnormalities who underwent DSE and coronary angiography. Patients were classified into four groups according to relative wan thickness (normal
Resumo:
Background Diastolic dysfunction induced by ischemia may alter transmitral blood flow, but this reflects global ventricular function, and pseudonormalization may occur with increased preload. Tissue Doppler may assess regional diastolic function and is relatively load-independent, but limited data exist regarding its application to stress testing. We sought to examine the stress response of regional diastolic parameters to dobutomine echocardiography (DbE). Methods Sixty-three patients underwent study with DbE: 20 with low probability of coronary artery disease (CAD) and 43 with CAD who underwent angiography. A standard DbE protocol was used, and segments were categorized as ischemic, scar, or normal. Color tissue Doppler was acquired at baseline and peak stress, and waveforms in the basal and mid segments were used to measure early filling (Em), late filling (Am), and E deceleration time. Significant CAD was defined by stenoses >50% vessel diameter. Results Diastolic parameters had limited feasibility because of merging of Em and Am waves at high heart rates and limited reproducibility. Nonetheless, compared with normal segments, segments subtended with significant stenoses showed a lower Em velocity at rest (6.2 +/- 2.6 cm/s vs 4.8 +/- 2.2 cm/s, P < .0001) and peak (7.5 +/- 4.2 cm/s vs 5.1 +/- 3.6 cm/s, P < .0001), Abnormal segments also showed a shorter E deceleration time (51 +/- 27 ms vs 41 +/- 27 ms, P = .0001) at base and peak. No changes were documented in Am. The same pattern was seen with segments identified as ischemic with wall motion score. However, in the absence of ischemia, segments of patients with left ventricular hypertrophy showed a lower Em velocity, with blunted Em responses to stress. Conclusion Regional diastolic function is sensitive to ischemia. However, a number of practical limitations limit the applicability of diastolic parameters for the quantification of stress echocardiography.
Resumo:
Stress echocardiography has been shown to improve the diagnosis of coronary artery disease in the presence of hypertension, but its value in prognostic evaluation is unclear. We sought to determine whether stress echocardiography could be used to predict mortality in 2363 patients with hypertension, who were followed for up to 10 years (mean 4.0+/-1.8) for death and revascularization. Stress echocardiograms were normal in 1483 patients (63%), 16% had resting left ventricular (LV) dysfunction alone, and 21% had ischemia. Abnormalities were confined to one territory in 489 patients (21%) and to multiple territories in 365 patients (15%). Cardiac death was less frequent among the patients able to exercise than among those undergoing dobutamine echocardiography (4% versus 7%, P<0.001). The risk of death in patients with a negative stress echocardiogram was <1% per year. Ischemia identified by stress echocardiography was an independent predictor of mortality in those able to exercise (hazard ratio 2.21, 95% confidence intervals 1.10 to 4.43, P=0.0001) as well as those undergoing dobutamine echo (hazard ratio 2.39, 95% confidence intervals 1.53 to 3.75, P=0.0001); other predictors were age, heart failure, resting LV dysfunction, and the Duke treadmill score. In stepwise models replicating the sequence of clinical evaluation, the results of stress echocardiography added prognostic power to models based on clinical and stress-testing variables. Thus, the results of stress echocardiography are an independent predictor of cardiac death in hypertensive patients with known or suspected coronary artery disease, incremental to clinical risks and exercise results.
Resumo:
Abnormal left ventricular (LV) filling is common, but not universal, in hypertensive LV hypertrophy (LVH). We sought to elucidate the relative contributions of myocardial structural changes, loading and hypertrophy to LV dysfunction in 113 patients: 85 with hypertensive LVH and 28 controls without LVH and with normal filling. Patients with normal dobutamine stress echocardiography and no history of coronary artery disease were selected, in order to exclude a contribution from ischaemia or scar. Abnormal LV filling was identified in 65 LVH patients, based on Doppler measurement of transmitral filling and annular velocities. All patients underwent grey-scale and colour tissue Doppler imaging from three apical views, which were stored and analysed off line. Integrated backscatter (113) and strain rate imaging were used to detect changes in structure and function; average cyclic variation of 113, strain rate and peak systolic strain were calculated by averaging each segment. Calibrated 113 intensity, corrected for pericardial 113 intensity, was measured in the septum and posterior wall from the parasternal long-axis view. Patients with LVH differed significantly from controls with respect to all backscatter and strain parameters, irrespective of the presence or absence of abnormal LV filling. LVH patients with and without abnormal LV filling differed with regard to age, LV mass and incidence of diabetes mellitus, but also showed significant differences in cyclic variation (P < 0.01), calibrated 113 in the posterior wall (P < 0.05) and strain rate (P < 0.01), although blood pressure, heart rate and LV systolic function were similar. Multivariate logistic regression analysis demonstrated that age, LV mass index and calibrated IB in the posterior wall were independent determinants of abnormal LV filling in patients with LVH. Thus structural and functional abnormalities can be detected in hypertensive patients with LVH with and without abnormal LV filling. In addition to age and LVH, structural (not functional) abnormalities are likely to contribute to abnormal LV filling, and may be an early sign of LV damage. 113 is useful for the detection of myocardial abnormalities in patients with hypertensive LVH.
Resumo:
1 This study has administered pirfenidone (5-methyl-l-phenyl-2-[1H]-pyridone) or amiloride to attenuate the remodelling and associated functional changes, especially an increased cardiac stiffness, in DOCA-salt hypertensive rats. 2 In control rats, the elimination half-life of pirfenidone following a single intravenous dose of 200 mg kg(-1) was 37 min while oral bioavailability at this dose was 25.7%. Plasma pirfenidone concentrations in control rats averaged 1.9 +/- 0.1 mug ml(-1) over 24 It after 14 days' administration as a 0.4% mixture in food. 3 Pirfenidone (approximately 250-300 mg kg(-1) day(-1) as 0.4% in food) and amiloride (I mg kg-1 day(-1) sc) were administered for 2 weeks starting 2 weeks post-surgery. Pirfenidone but not amiloride attenuated ventricular hypertrophy (2.69 +/- 0.09, UNX 2.01 +/- 0.05. DOCA-salt 3.11 +/- 0.09 mg kg(-1) body wt) without lowering systolic blood pressure. 4 Collagen deposition was significantly increased in the interstitium after 2 weeks and further increased with scarring of the left ventricle after 4 weeks; pirfenidone and amiloride reversed the increases and prevented further increases. This accumulation of collagen was accompanied by an increase in diastolic stiffness constant; both amiloride and pirfenidone, reversed this increase. 5 Noradrenaline potency (positive chronotropy) was decreased in right atria (neg log EC50: control 6.92 +/- 0.06; DOCA-salt 6.64 +/- 0.08); pirfenidone but not amiloride reversed this change. Noradrenaline was a more potent vasoconstrictor in thoracic aortic rings (neg log EC50: control 6.91 +/- 0.10; DOCA-salt 7.90 +/- 0.07); pirfenidone treatment did not change noradrenaline potency. 6 Thus, pirfenidone and amiloride reverse and prevent cardiac remodelling and the increased cardiac stiffness without reversing the increased vascular responses to noradrenaline.