984 resultados para Humoral rejection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic renal allograft rejection is characterized by alterations in the extracellular matrix compartment and in the proliferation of various cell types. These features are controlled, in part by the metzincin superfamily of metallo-endopeptidases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteinase (ADAM) and meprin. Therefore, we investigated the regulation of metzincins in the established Fisher to Lewis rat kidney transplant model. Studies were performed using frozen homogenates and paraffin sections of rat kidneys at day 0 (healthy controls) and during periods of chronic rejection at day +60 and day +100 following transplantation. The messenger RNA (mRNA) expression was examined by Affymetrix Rat Expression Array 230A GeneChip and by real-time Taqman polymerase chain reaction analyses. Protein expression was studied by zymography, Western blot analyses, and immunohistology. mRNA levels of MMPs (MMP-2/-11/-12/-14), of their inhibitors (tissue inhibitors of metalloproteinase (TIMP)-1/-2), ADAM-17 and transforming growth factor (TGF)-beta1 significantly increased during chronic renal allograft rejection. MMP-2 activity and immunohistological staining were augmented accordingly. The most important mRNA elevation was observed in the case of MMP-12. As expected, Western blot analyses also demonstrated increased production of MMP-12, MMP-14, and TIMP-2 (in the latter two cases as individual proteins and as complexes). In contrast, mRNA levels of MMP-9/-24 and meprin alpha/beta had decreased. Accordingly, MMP-9 protein levels and meprin alpha/beta synthesis and activity were downregulated significantly. Members of metzincin families (MMP, ADAM, and meprin) and of TIMPs are differentially regulated in chronic renal allograft rejection. Thus, an altered pattern of metzincins may represent novel diagnostic markers and possibly may provide novel targets for future therapeutic interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelin regulates cytokine expression in vitro and in vivo. This study investigated the effects of chronic allograft rejection on hepatic endothelin-converting enzyme-1 (ECE-1) gene expression and endothelin-1 (ET-1) plasma clearance. Using the Lewis-F344 minor histocompatibility mismatch model of heterotopic cardiac transplantation, hepatic ECE-1 gene expression was measured by real-time polymerase chain reaction and host plasma clearance of ET-1 was measured 8 weeks after transplantation in the absence of immunosuppression. In animals undergoing allograft rejection, hepatic ECE-1 gene expression increased 2-fold (P < 0.05), whereas no effect of rejection on ET-1 clearance from plasma was observed. In summary, upregulation of ECE-1 gene expression occurs in the liver of the host during chronic allograft rejection. Because the liver represents both a key organ for cytokine production and for endothelin metabolism, increased hepatic ECE-1-mediated ET-1 synthesis may contribute to host responses and cytokine production during allograft rejection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular nucleotides (e.g. ATP, UTP, ADP) are released by activated endothelium, leukocytes and platelets within the injured vasculature and bind specific cell-surface type-2 purinergic (P2) receptors. This process drives vascular inflammation and thrombosis within grafted organs. Importantly, there are also vascular ectonucleotidases i.e. ectoenzymes that hydrolyze extracellular nucleotides in the blood to generate nucleosides (viz. adenosine). Endothelial cell NTPDase1/CD39 has been shown to critically modulate levels of circulating nucleotides. This process tends to limit the activation of platelet and leukocyte expressed P2 receptors and also generates adenosine to reverse inflammatory events. This vascular protective CD39 activity is rapidly inhibited by oxidative reactions, such as is observed with liver ischemia reperfusion injury. In this review, we chiefly address the impact of these signaling cascades following liver transplantation. Interestingly, the hepatic vasculature, hepatocytes and all non-parenchymal cell types express several components co-ordinating the purinergic signaling response. With hepatic and vascular dysfunction, we note heightened P2- expression and alterations in ectonucleotidase expression and function that may predispose to progression of disease. In addition to documented impacts upon the vasculature during engraftment, extracellular nucleotides also have direct influences upon liver function and bile flow (both under physiological and pathological states). We have recently shown that alterations in purinergic signaling mediated by altered CD39 expression have major impacts upon hepatic metabolism, repair mechanisms, regeneration and associated immune responses. Future clinical applications in transplantation might involve new therapeutic modalities using soluble recombinant forms of CD39, altering expression of this ectonucleotidase by drugs and/or using small molecules to inhibit deleterious P2-mediated signaling while augmenting beneficial adenosine-mediated effects within the transplanted liver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation examines the global technological and environmental history of copper smelting and the conflict that developed between historic preservation and environmental remediation at major copper smelting sites in the United States after their productive periods ended. Part I of the dissertation is a synthetic overview of the history of copper smelting and its environmental impact. After reviewing the basic metallurgy of copper ores, the dissertation contains successive chapters on the history of copper smelting to 1640, culminating in the so-called German, or Continental, processing system; on the emergence of the rival Welsh system during the British industrial revolution; and on the growth of American dominance in copper production the late 19th and early 20th centuries. The latter chapter focuses, in particular, on three of the most important early American copper districts: Michigan’s Keweenaw Peninsula, Tennessee’s Copper Basin, and Butte-Anaconda, Montana. As these three districts went into decline and ultimately out of production, they left a rich industrial heritage and significant waste and pollution problems generated by increasingly more sophisticated technologies capable of commercially processing steadily growing volumes of decreasingly rich ores. Part II of the dissertation looks at the conflict between historic preservation and environmental remediation that emerged locally and nationally in copper districts as they went into decline and eventually ceased production. Locally, former copper mining communities often split between those who wished to commemorate a region’s past importance and develop heritage tourism, and local developers who wished to clear up and clean out old industrial sites for other purposes. Nationally, Congress passed laws in the 1960s and 1970s mandating the preservation of historical resources (National Historic Preservation Act) and laws mandating the cleanup of contaminated landscapes (CERCLA, or Superfund), objectives sometimes in conflict – especially in the case of copper smelting sites. The dissertation devotes individual chapters to the conflicts that developed between environmental remediation, particularly involving the Environmental Protection Agency and the heritage movement in the Tennessee, Montana, and Michigan copper districts. A concluding chapter provides a broad model to illustrate the relationship between industrial decline, federal environmental remediation activities, and the growth of heritage consciousness in former copper mining and smelting areas, analyzes why the outcome varied in the three areas, and suggests methods for dealing with heritage-remediation issues to minimize conflict and maximize heritage preservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcriptomics could contribute significantly to the early and specific diagnosis of rejection episodes by defining 'molecular Banff' signatures. Recently, the description of pathogenesis-based transcript sets offered a new opportunity for objective and quantitative diagnosis. Generating high-quality transcript panels is thus critical to define high-performance diagnostic classifier. In this study, a comparative analysis was performed across four different microarray datasets of heterogeneous sample collections from two published clinical datasets and two own datasets including biopsies for clinical indication, and samples from nonhuman primates. We characterized a common transcriptional profile of 70 genes, defined as acute rejection transcript set (ARTS). ARTS expression is significantly up-regulated in all AR samples as compared with stable allografts or healthy kidneys, and strongly correlates with the severity of Banff AR types. Similarly, ARTS were tested as a classifier in a large collection of 143 independent biopsies recently published by the University of Alberta. Results demonstrate that the 'in silico' approach applied in this study is able to identify a robust and reliable molecular signature for AR, supporting a specific and sensitive molecular diagnostic approach for renal transplant monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In ongoing chronic rejection after lung transplantation, alveolar interstitial fibrosis develops. However, little is known about the mechanisms involved. In order to investigate these mechanisms, expression of extracellular matrix molecules (ECM) (undulin, decorin, tenascin, laminin, and fibronectin) and cytokines [transforming growth factor (TGF)-beta 1, TGF-beta 3, platelet-derived growth factor (PDGF), and PDGF receptor] were semiquantitatively evaluated in chronically rejected lung allografts, using standard immunohistochemical techniques. Additionally, the presence of macrophages was analysed. The present study demonstrates an increased infiltration of macrophages with a concomitant upregulation of cytokines (TGF-beta 1, TGF-beta 3, and PDGF) and an increased deposition of ECM in chronic lung rejection. These cytokines have an important role in the stimulation of fibroblasts which are a major source of ECM. Upregulated expression of ECM in the alveolar interstitial space leads to alveolar malfunction by thickening of the wall and, thus, is one of the causative factors of respiratory dysfunction in chronic lung graft rejection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: The treatment of recurrent rejection in heart transplant recipients has been a controversial issue for many years. The intent of this retrospective study was to perform a risk-benefit analysis between treatment strategies with bolus steroids only versus anti-thymocyte globulins (RATG; 1.5 mg/kg q 4 days). METHODS: Between 1986 and 1993, 69 of 425 patients (17 male, 52 female; mean age 44 +/- 11 years) who had more than one rejection/patient per month (rej/pt per mo) in the first 3 postoperative months were defined as recurrent rejectors. RESULTS: Repetitive methylprednisolone bolus therapy (70 mg/kg q 3 days) was given in 27 patients (group M; 1.4 +/- 0.2 rej/pt per mo) and RATG therapy for one of the rejection episodes of the 42 remaining patients (group A; 1.5 +/- 0.2 rej/pt per mo). The quality of triple drug immunosuppression in the two study groups was comparable. The rejection-free interval (RFI) following RATG treatment in group A was 21.6 +/- 10 days and 22 +/- 11 in group M. In group M, 3 of 27 patients (11%) had a rejection treatment-related infection (2 bacterial; 1 viral) versus 6 of the 42 patients of group A (14.2%; bacterial 1, viral 5). During postoperative months 3-24, 0.15 +/- 0.12 rej/pat per mo were observed in group M and 0.21 +/- 0.13 rej/pat per mo in group A (n.s.). In this 21-month period cytolytic therapy for rejection was initiated in 8 of the remaining 21 patients of group M (38%) and 15 of the remaining 37 patients of group A (40.5%). The absolute survival and the individual causes of death were not affected by the type of initial treatment of recurrent rejection. The actuarial freedom of graft atherosclerosis is comparable in the two groups with 78% in group A versus 79% in group M free of graft atherosclerosis at 3 years postoperatively. CONCLUSIONS: A comparison of cytolytic therapy versus repeated applications of bolus steroids for treatment of recurrent rejection reveals no significant difference in the long-term patient outcome with respect to the incidence of future rejection episodes and survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present report the prevalence, severity, and risk factors of tricuspid valve regurgitation (TR) in 251 heart transplant recipients have been analyzed retrospectively. Tricuspid valve function was studied by color-flow Doppler echocardiogram and annual heart catheterization. The presence or severity of TR was graded on a scale from 0 (no TR) to 4 (severe). Additional postoperative data included rate of rejection, number of endomyocardial biopsies, incidence of transplant vasculopathy, and preoperative and postoperative hemodynamics. The incidence of grade 3 TR increases from 5% at 1 year to 50% at 4 years after transplantation. Multivariate analysis showed rate of rejection and donor heart weight to be significant risk factors. The ischemic intervals as well as the preoperative and postoperative pulmonary hemodynamics did not affect the severity or prevalence of TR. These results indicate that various factors appear to have an impact on the development of TR and that the prevalence might be lowered by a reduction of the number of biopsies performed and when possible, oversizing of donor hearts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of cyclosporine A (CyA) into the immunosuppressive therapy has significantly improved the results of heart transplantation (HTX). Its nephrotoxicity and hepatotoxicity, however, often limit the perioperative and postoperative use of this drug. The purpose of this retrospective study was to evaluate the effect of early postoperative CyA blood levels on the incidence of early as well as late cardiac rejection and patients' survival. Between October 1985 and June 1991, HTX was performed in 311 patients. Standard immunosuppression consisted of azathioprine (1-2 mg/kg), prednisolone (0.5 to 0.1 mg/kg) and CyA. Rabbit-antithymocyte-globulin (RATG - 1.5 mg/kg) was administered for the first 4 days postoperatively. Moderate rejection was treated with 3 x 500 mg methylprednisolone, severe rejection with RATG (1.5 mg/kg three times a day). Patients were excluded from this study because of a positive cross-matching, early death unrelated to rejection or alternate forms of immunosuppression (n = 111). Follow-up was complete in 200 patients (mean age 44 +/- 11; 18 female, 182 male; 204,233 patient days) with a total of 5380 biopsies. The cohort was divided into group I (no CyA for day 0 to 2; n = 108) and group II (CyA during day 0 to 2; n = 92) according to the onset of CyA therapy. In 101 patients (group A) the mean CyA blood level was less than 150 ng/ml from day 0 to 14 and in 99 patients more than 150 ng/ml (group B).(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eotaxin/CCL11 chemokine is expressed in different organs, including the heart, but its precise cellular origin in the heart is unknown. Eotaxin is associated with Th2-like responses and exerts its chemotactic effect through the chemokine receptor-3 (CCR3), which is also expressed on mast cells (MC). The aim of our study was to find the cellular origin of eotaxin in the heart, and to assess whether expression is changing during ongoing acute heart transplant rejection, indicating a correlation with mast cell infiltration which we observed in a previous study. In a model of ongoing acute heart transplant rejection in the rat, we found eotaxin mRNA expression within infiltrating macrophages, but not in mast cells, by in situ-hybridization. A five-fold increase in eotaxin protein in rat heart transplants during ongoing acute rejection was measured on day 28 after transplantation, compared to native and isogeneic control hearts. Eotaxin concentrations in donor hearts on day 28 after transplantation were significantly higher compared to recipient hearts, corroborating an origin of eotaxin from cells within the heart, and not from the blood. The quantitative comparison of eotaxin mRNA expression between native hearts, isografts, and allografts, respectively, revealed no statistically significant difference after transplantation, probably due to an overall increase in the housekeeping gene's 18S rRNA during rejection. Quantitative RT-PCR showed an increase in mRNA expression of CCR3, the receptor for eotaxin, during ongoing acute rejection of rat heart allografts. Although a correlation between increasing eotaxin expression by macrophages and mast cell infiltration is suggestive, functional studies will elucidate the role of eotaxin in the process of ongoing acute heart transplant rejection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We showed recently that low molecular weight dextran sulfate (DXS) acts as an endothelial cell (EC) protectant and prevents human complement- and NK cell-mediated cytotoxicity towards porcine cells in vitro. We therefore hypothesized that DXS, combined with cyclosporine A (CyA), could prevent acute vascular rejection (AVR) in the hamster-to-rat cardiac xenotransplantation model. Untreated, CyA-only, and DXS-only treated rats rejected their grafts within 4-5 days. Of the hearts grafted into rats receiving DXS in combination with CyA, 28% survived more than 30 days. Deposition of anti-hamster antibodies and complement was detected in long-term surviving grafts. Combined with the expression of hemoxygenase 1 (HO-1) on graft EC, these results indicate that accommodation had occurred. Complement activity was normal in rat sera after DXS injection, and while systemic inhibition of the coagulation cascade was observed 1 h after DXS injection, it was absent after 24 h. Moreover, using a fluorescein-labeled DXS (DXS-Fluo) injected 1 day after surgery, we observed a specific binding of DXS-Fluo to the xenograft endothelium. In conclusion, we show here that DXS + CyA induces long-term xenograft survival and we provide evidence that DXS might act as a local EC protectant also in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute vascular rejection represents a formidable barrier to clinical xenotransplantation and it is known that this type of rejection can also be initiated by xenoreactive antibodies that have limited complement-activating ability. Using a sophisticated mouse model, a recent study has provided in vivo evidence for the existence of an IgG(1)-mediated vascular rejection, which uniquely depends on both the activation of complement and interactions with FcgammaRIII on natural killer (NK) cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute or even hyperacute humoral graft rejection, mediated by classical pathway complement activation, occurs in allo- and xenotransplantation due to preformed anti-graft antibodies. Intravenous immunoglobulin (IVIg) preparations can prevent complement-mediated tissue injury and delay hyperacute xenograft rejection. It is known that IgM-enriched IVIg (IVIgM) has a higher capacity to block complement than IVIgG. Different IVIgs were therefore tested for specificity of complement inhibition and effect on anti-bacterial activity of human serum. IVIgM-I (Pentaglobin), 12% IgM), IVIgM-II (IgM-fraction of IVIgM-I, 60% IgM), and three different IVIgG (all >95% IgG) were used. The known complement inhibitor dextran sulfate was used as control. Hemolytic assays were performed to analyze pathway-specificity of complement inhibition. Effects of IVIg on complement deposition on pig cells and Escherichia coli were assessed by flow cytometry and cytotoxicity as well as bactericidal assays. Complement inhibition by IVIgM was specific for the classical pathway, with IC50 values of 0.8 mg/ml for IVIgM-II and 1.7 mg/ml for IVIgM-I in the CH50 assay. Only minimal inhibition of the lectin pathway was seen with IVIgM-II (IC50 15.5 mg/ml); no alternative pathway inhibition was observed. IVIgG did not inhibit complement in any hemolytic assay. Classical pathway complement inhibition by IVIgM was confirmed in an in vitro xenotransplantation model with PK15 cells. In contrast, IVIgM did not inhibit (mainly alternative pathway mediated) killing of E. coli by human serum. In conclusion, IgM-enriched IVIg is a specific inhibitor of the classical complement pathway, leaving the alternative pathway intact, which is an important natural anti-bacterial defense, especially for immunosuppressed patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Besides α1,3 galactosyltransferase (Gal) gene knockout several transgene combinations to prevent pig-to-human xenograft rejection are being investigated. hCD46/HLA-E double transgenic pigs were tested for prevention of xenograft rejection in an ex vivo pig-to-human xenoperfusion model. In addition, expression of human thrombomodulin (hTM-) on wild-type and/or multi-transgenic (GalTKO/hCD46) background was evaluated to overcome pig-to-human coagulation incompatibility. Methods hCD46/HLA-E double transgenic as well as wild-type pig forelimbs were ex vivo perfused with whole, heparinized human blood and autologous blood, respectively. Blood samples were analyzed for production of porcine and/or human inflammatory cytokines. Biopsy samples were examined for deposition of complement proteins as well as E-selectin and VCAM-1 expression. Serial blood cell counts were performed to analyze changes in human blood cell populations. In vitro, PAEC were analyzed for ASGR1 mediated human platelet phagocytosis. In addition, a biochemical assay was performed using hTM-only and multi-transgenic (GalTKO/hCD46/hTM) pig aortic endothelial cells (PAEC) to evaluate the ability of hTM to generate activated protein C (APC). Subsequently, the anti-coagulant properties of hTM were tested in a microcarrier based coagulation assay with PAEC and human whole blood. Results No hyperacute rejection was seen in the ex vivo perfusion model. Extremity perfusions lasted for up to 12 h without increase of vascular resistance and had to be terminated due to continuous small blood losses. Plasma levels of porcine IL1β (P < 0.0001), and IL-8 (P = 0.019) as well as human C3a, C5a and soluble C5b-9 were significantly (P < 0.05–<0.0001) lower in blood perfused through hCD46/HLA-E transgenic as compared to wild-type limbs. C3b/c, C4b/c, and C6 deposition as well as E-selectin and VCAM-1 expression were significantly (P < 0.0001) higher in tissue of wild-type as compared to transgenic limbs. Preliminary immunofluorescence staining results showed that the expression of hCD46/HLA-E is associated with a reduction of NK cell tissue infiltration (P < 0.05). A rapid decrease of platelets was observed in all xenoperfusions. In vitro findings showed that PAEC express ASGR1 and suggest that this molecule is involved in human platelet phagocytosis. In vitro, we found that the amount of APC in the supernatant of hTM transgenic cells increased significantly (P < 0.0001) with protein C concentration in a dose-dependent manner as compared to control PAEC lacking hTM, where the turnover of the protein C remained at the basal level for all of the examined concentration. In further experiments, hTM also showed the ability to prevent blood coagulation by three- to four-fold increased (P < 0.001) clotting time as compared to wild-type PAEC. The formation of TAT complexes was significantly lower when hTM-transgenic cells (P < 0.0001) were used as compared to wild-type cells. Conclusions Transgenic hCD46/HLA-E expression clearly reduced humoral xenoresponses since the terminal pathway of complement, endothelial cell activation, inflammatory cytokine production and NK-cell tissue infiltration were all down-regulated. We also found ASGR1 expression on the vascular endothelium of pigs, and this molecule may thus be involved in binding and phagocytosis of human platelets during pig-to-human xenotransplantation. In addition, use of the hTM transgene has the potential to overcome coagulation incompatibilities in pig-to-human xenotransplantation.