929 resultados para Human skeleton -- Disorders
Resumo:
Limited but significant sequence similarity has been observed between an uncharacterized human protein, SIN1, and the S. pombe SIN1, Dictyostelium RIP3 and S. cerevisiae AVO1 proteins. The human Sin1 gene has been automatically predicted (MAPKAP1; GenBank accession number NM_024117); however, this sequence appears to be incomplete. In this study, we have cloned and characterized the full-length human Sin1 mRNA and identified a highly conserved domain that defines the family of SIN1 orthologues, members of which are widely distributed in the fungal and metazoan kingdoms. We demonstrate that Sin1 transcripts can use alternative polyadenylation signals and describe a number of Sin1 splice variants that potentially encode functionally different isoforms. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Clustering of the T cell integrin, LFA-1, at specialized regions of intercellular contact initiates integrin-mediated adhesion and downstream signaling, events that are necessary for a successful immunological response. But how clustering is achieved and sustained is not known. Here we establish that an LFA-1-associated molecule, PTA-1, is localized to membrane rafts and binds the carboxyl-terminal domain of isoforms of the actin-binding protein 4.1G. Protein 4.1 is known to associate with the membrane-associated guanylate kinase homologue, human discs large. We show that the carboxyl-terminal peptide of PTA-1 also can bind human discs large and that the presence or absence of this peptide greatly influences binding between PTA-1 and different isoforms of 4.1G. T cell stimulation with phorbol ester or PTA-1 cross-linking induces PTA-1 and 4.1G to associate tightly with the cytoskeleton, and the PTA-1 from such activated cells now can bind to the amino-terminal region of 4.1G. We propose that these dynamic associations provide the structural basis for a regulated molecular adhesive complex that serves to cluster and transport LFA-1 and associated molecules.
Resumo:
To compare the incidence of foetal malformations (FMs) in pregnant women with epilepsy treated with different anti-epileptic drugs (AED) and doses, and the influence of seizures, family and personal history, and environmental factors. A prospective, observational, community-based cohort study. Methods. A voluntary, Australia-wide, telephone-interview-based register prospectively enrolling three groups of pregnant women: taking AEDs for epilepsy; with epilepsy not taking AEDs; taking AEDs for a non-epileptic indication. Four hundred and fifty eligible women were enrolled over 40 months. Three hundred and ninety six pregnancies had been completed, with 7 sets of twins, for a total of 403 pregnancy outcomes. Results. 354 (87.8%) pregnancy outcomes resulted in a healthy live birth, 26 (6.5%) had a FM, 4 (1%) a death in utero, 1 (0.2%) a premature labour with stillbirth, 14 (3.5%) a spontaneous abortion and 4 lost to follow-up. The FM rate was greater in pregnancies exposed to sodium valproate (VPA) in the first trimester (116.0%) compared with those exposed to all other AEDs (16.0% vs. 2.4%, P < 0.01) or no AEDs (16.0% vs. 3.1 %, P < 0.01). The mean daily dose of VPA taken in pregnancy with FMs was significantly greater than in those without (11975 vs: 1128 mg, P < 0.01). The incidence of FM with VPA doses greater than or equal to 1100 mg was 30.2% vs. 3.2% with doses < 1100 mg (P < 0.01). Conclusions. There is a dose-effect relationship for FM and exposure to VPA during the first trimester of pregnancy, with higher doses of VPA associated with a significantly greater risk than with lower doses or with other AEDs. These results highlight the need to limit, where possible, the dose of VPA in pregnancy. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Alcoholism results in changes in the human brain that reinforce the cycle of craving and dependency, and these changes are manifest in the pattern of expression of proteins in key cells and brain areas. Described here is a proteomics-based approach aimed at determining the identity of proteins in the superior frontal cortex (SFC) of the human brain that show different levels of expression in autopsy samples taken from healthy and long-term alcohol abuse subjects. Soluble protein fractions constituting pooled samples combined from SFC biopsies of four well-characterized chronic alcoholics (mean consumption > 80 g ethanol/day throughout adulthood) and four matched controls (< 20 g/day) were generated. Two-dimensional electrophoresis was performed in triplicate on alcoholic and control samples and the resultant protein profiles analyzed for differential expression. Overall, 182 proteins differed by the criterion of twofold or more between case and control samples. Of these, 139 showed significantly lower expression in alcoholics, 35 showed significantly higher expression, and 8 were new or had disappeared. To date, 63 proteins have been identified using MALDI-MS and MS-MS. The finding that the expression level of differentially expressed proteins is preponderantly lower in the alcoholic brain is supported by recent results from parallel studies using microarray mRNA transcript.
Resumo:
Chronic alcohol exposure induces lasting behavioral changes, tolerance, and dependence. This results, at least partially, from neural adaptations at a cellular level. Previous genome-wide gene expression studies using pooled human brain samples showed that alcohol abuse causes widespread changes in the pattern of gene expression in the frontal and motor cortices of human brain. Because these studies used pooled samples, they could not determine variability between different individuals. In the present study, we profiled gene expression levels of 14 postmortem human brains (seven controls and seven alcoholic cases) using cDNA microarrays (46 448 clones per array). Both frontal cortex and motor cortex brain regions were studied. The list of genes differentially expressed confirms and extends previous studies of alcohol responsive genes. Genes identified as differentially expressed in two brain regions fell generally into similar functional groups, including metabolism, immune response, cell survival, cell communication, signal transduction and energy production. Importantly, hierarchical clustering of differentially expressed genes accurately distinguished between control and alcoholic cases, particularly in the frontal cortex.
Resumo:
A competitive RT-PCR assay was used to quantify the expression of the GABA(A) receptor beta(1), beta(2) and beta(3) isoform mRNA transcripts in the superior frontal cortex and motor cortex of 21 control and 22 alcoholic cases. A single set of primers was designed that permitted amplification of all three transcripts and the internal standard simultaneously; differentiation of the individual transcripts was achieved by restriction enzyme digestion. Construction of a standard curve, using the internal standard and a concentration range of beta(2) cRNA-enabled quantitation of mRNA expression levels. No significant difference in mRNA expression was found between the control and alcoholic case groups in either the superior frontal or motor cortex for the beta(2) or beta(3) isoforms. A significant interaction was found between isoform and area, although, the two case groups did not partition on this measure. The interaction was due to a significant difference between superior frontal and motor cortex for the beta(3) isoform; this regional comparison was not significant for beta(2) mRNA. Age at death and post-mortem delay (PMD) had no significant effect on beta mRNA expression in either case group in either region. A beta(1) signal could not be detected in the RT-PCR assay. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We examined the potential role of SMAD7 in human epidermal keratinocyte differentiation. Overexpression of SMAD7 inhibited the activity of the proliferation-specific promoters for the keratin 14 and cdc2 genes and reduced the expression of the mRNA for the proliferation-specific genes cdc2 and E2F1. The ability of SMAD7 to suppress cdc2 promoter activity was lost in transformed keratinocyte cell lines and was mediated by a domain(s) located between aa 195-395 of SMAD7. This domain lies outside the domain required to inhibit TGFbeta1 signaling, suggesting that this activity is mediated by a novel functional domain(s). Examination of AP1, NFkappaB, serum response element, Gli, wnt, and E2F responsive reporters indicated that SMAD7 significantly suppressed the E2F responsive reporter and modestly increased AP1 activity in proliferating keratinocytes. These data Suggest that SMAD7 may have a role in TGFbeta-independent signaling events in proliferating/undifferentiated keratinocytes. The effects of SMAD7 in differentiated keratinocytes indicated a more traditional role for SMAD7 as an inhibitor of TGFbeta action. SMAD7 was unable to initiate the expression of differentiation markers but was able to superinduce/derepress differentiation-specific markers and genes in differentiated keratinocytes. This latter role is consistent with the ability of SMAD7 to inhibit TGFbeta-mediated suppression of keratinocyte differentiation and suggest that the opposing actions of SMAD7 and TGFbeta may serve to modulate squamous differentiation. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The AP-2 transcription factor family is presumed to play an important role in the regulation of the keratinocyte squamous differentiation program; however, limited functional data are available to support this. In the present study, the activity and regulation of AP-2 were examined in differentiating human epidermal keratinocytes. We report that (1) AP-2 transcriptional activity decreases in differentiated keratinocytes but remains unchanged in differentiation-insensitive squamous cell carcinoma cell lines, (2) diminished AP-2 transcriptional activity is associated with a loss of specific DNA-bound AP-2 complexes, and (3) there is an increase in the ability of cytoplasmic extracts, derived from differentiated keratinocytes, to phosphorylate AP-2alpha and AP-2beta when cells differentiate. In contrast, extracts from differentiation-insensitive squamous cell carcinoma cells are unable to phosphorylate AP-2 proteins. Finally, the phosphorylation of recombinant AP-2alpha by cytosolic extracts from differentiated keratinocytes is associated with decreased AP-2 DNA-binding activity. Combined, these data indicate that AP-2 trans-activation and DNA-binding activity decrease as keratinocytes differentiate, and that this decreased activity is associated with an enhanced ability to phosphorylate AP-2alpha and beta.
Resumo:
A short-term whole-skin organ culture model has been established to enable the investigation of cell cycle perturbations in epidermal layer cells following exposure to ultraviolet radiation (UVR). This model affords the opportunity to manipulate the growth and nutrient conditions, and to perform detailed biochemical and immunohistochemical analysis of skin cells in their normal epidermal layer microenvironment. The use of this model is described in this chapter.
Resumo:
The aim was to investigate the roles of proline residues in extracellular loop 2 (P172, P183, P188 and P209) and transmembrane domains 2, 5, 11 and 12 (P108, P270, P526, P551, P552 and P570) in determining noradrenaline transporter (NET) expression and function. Mutants of human NET with these residues mutated to alanine were pharmacologically characterized. Mutation of P108, P270 and P526 disrupted cell surface expression, from [H-3]nisoxetine binding and confocal microscopy data. Mutations of P526, P551 and P570 reduced transporter turnover (V-max of [H-3]noradrenaline uptake/B-max of [H-3]nisoxetine binding) by 1.5-1.7-fold compared with wild-type NET, so these residues might be involved in conformational changes associated with substrate translocation. Conversely, mutations of P172, P183, P188 and P209 increased V-max/B-max by 2-3-fold compared with wild-type, indicating that the presence of these proline residues limits turnover of the NET. The mutations had few effects on apparent affinities of substrates or affinities of inhibitors, except decreases in inhibitor affinities after mutations of the P270 and P570 residues, and increases after mutation of the P526 residue. Hence, proline residues in extracellular loop 2 and in transmembrane domains have a range of roles in determining expression and function of the NET.