948 resultados para Human Alpha-2-adrenergic Receptor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The β-adrenergic receptor kinase 1 (βARK1) is a member of the G protein-coupled receptor kinase (GRK) family that mediates the agonist-dependent phosphorylation and desensitization of G protein-coupled receptors. We have cloned and disrupted the βARK1 gene in mice by homologous recombination. No homozygote βARK1−/− embryos survive beyond gestational day 15.5. Prior to gestational day 15.5, βARK1−/− embryos display pronounced hypoplasia of the ventricular myocardium essentially identical to the “thin myocardium syndrome” observed upon gene inactivation of several transcription factors (RXRα, N-myc, TEF-1, WT-1). Lethality in βARK1−/− embryos is likely due to heart failure as they exhibit a >70% decrease in cardiac ejection fraction determined by direct in utero intravital microscopy. These results along with the virtual absence of endogenous GRK activity in βARK1−/− embryos demonstrate that βARK1 appears to be the predominant GRK in early embryogenesis and that it plays a fundamental role in cardiac development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recombinant adeno-associated virus (AAV) vectors have been used to transduce murine skeletal muscle as a platform for secretion of therapeutic proteins. The utility of this approach for treating alpha-1-antitrypsin (AAT) deficiency was tested in murine myocytes in vitro and in vivo. AAV vectors expressing the human AAT gene from either the cytomegalovirus (CMV) promoter (AAV-C-AT) or the human elongation factor 1-α promoter (AAV-E-AT) were examined. In vitro in C2C12 murine myoblasts, the expression levels in transient transfections were similar between the two vectors. One month after transduction, however, the human elongation factor 1 promoter mediated 10-fold higher stable human AAT expression than the CMV promoter. In vivo transduction was performed by injecting doses of up to 1.4 × 1013 particles into skeletal muscles of several mouse strains (C57BL/6, BALB/c, and SCID). In vivo, the CMV vector mediated higher levels of expression, with sustained serum levels over 800 μg/ml in SCID and over 400 μg/ml in C57BL/6 mice. These serum concentrations are 100,000-fold higher than those previously observed with AAV vectors in muscle and are at levels which would be therapeutic if achieved in humans. High level expression was delayed for several weeks but was sustained for over 15 wk. Immune responses were dependent upon the mouse strain and the vector dosage. These data suggest that recombinant AAV vector transduction of skeletal muscle could provide a means for replacing AAT or other essential serum proteins but that immune responses may be elicited under certain conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We reported previously that a conformation-specific antibody, Ab P2, to a 16-amino acid peptide (Glu-Gly-Tyr-Lys-Lys-Lys-Tyr-Gln-Gln-Val-Asp-Glu-Glu-Phe-Leu-Arg) of the cytoplasmic domain of the β-type platelet-derived growth factor receptor also recognizes the epidermal growth factor (EGF) receptor. Although the antibody is not directed to phosphotyrosine, it recognizes in immunoprecipitation the activated and hence phosphorylated form of both receptors. In P2 peptide, there are two tripeptide sequences, Asp-Glu-Glu and Tyr-Gln-Gln, that are also present in the EGF receptor. Our present studies using either EGF receptor C-terminal deletion mutants or point mutations (Tyr→Phe) and our previous studies on antibody inhibition by P2-derived peptides suggest that Gln-Gln in combination with Asp-Glu-Glu forms a high-affinity complex with Ab P2 and that such complex formation is dependent on tyrosine phosphorylation. Of the five phosphate acceptor sites in the EGF receptor, clustered in the extreme C-terminal tail, phosphorylation of three tyrosine residues (992, 1068, and 1086) located between Asp-Glu-Glu and Gln-Gln is necessary for Ab P2 binding. In contrast, the acceptor sites Tyr 1173 and 1148 play no role in the conformation change. Asp-Glu-Glu and Gln-Gln are located 169 amino acids apart, and it is highly likely that the interactions among three negatively charged phosphotyrosine residues in the receptor C terminus may result in the bending of the peptide chain in such a way that these two peptides come close to each other to form an antibody-binding site. Such a possibility is also supported by our finding that receptor dephosphorylation results in complete loss of Ab P2–binding activity. In conclusion, we have identified a domain within the cytoplasmic part of the EGF receptor whose conformation is altered by receptor phosphorylation; furthermore, we have identified the tyrosine residues that positively regulate this conformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular mechanisms that regulate in situ activation of ryanodine receptors (RY) in different cells are poorly understood. Here we demonstrate that caffeine (10 mM) released Ca2+ from the endoplasmic reticulum (ER) in the form of small spikes in only 14% of cultured fura-2 loaded beta cells from ob/ob mice. Surprisingly, when forskolin, an activator of adenylyl cyclase was present, caffeine induced larger Ca2+ spikes in as many as 60% of the cells. Forskolin or the phosphodiesterase-resistant PKA activator Sp-cAMPS alone did not release Ca2+ from ER. 4-Chloro-3-ethylphenol (4-CEP), an agent that activates RYs in other cell systems, released Ca2+ from ER, giving rise to a slow and small increase in [Ca2+]i in beta cells. Prior exposure of cells to forskolin or caffeine (5 mM) qualitatively altered Ca2+ release by 4-CEP, giving rise to Ca2+ spikes. In glucose-stimulated beta cells forskolin induced Ca2+ spikes that were enhanced by 3,9-dimethylxanthine, an activator of RYs. Analysis of RNA from islets and insulin-secreting βTC-3-cells by RNase protection assay, using type-specific RY probes, revealed low-level expression of mRNA for the type 2 isoform of the receptor (RY2). We conclude that in situ activation of RY2 in beta cells requires cAMP-dependent phosphorylation, a process that recruits the receptor in a functionally operative form.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stimulation of β-adrenergic receptors (BAR) by clenbuterol (CLE) increases nerve growth factor (NGF) biosynthesis in the rat cerebral cortex but not in other regions of the brain. We have explored the transcription mechanisms that may account for the cortex-specific activation of the NGF gene. Although the NGF promoter contains an AP-1 element, AP-1-binding activity in the cerebral cortex was not induced by CLE, suggesting that other transcription factors govern the brain area-specific induction of NGF. Because BAR activation increases cAMP levels, we examined the role of CCAAT/enhancer-binding proteins (C/EBP), some of which are known to be cAMP-inducible. In C6–2B glioma cells, whose NGF expression is induced by BAR agonists, (i) CLE increased C/EBPδ-binding activity, (ii) NGF mRNA levels were increased by overexpressing C/EBPδ, and (iii) C/EBPδ increased the activity of an NGF promoter–reporter construct. Moreover, DNase footprinting and deletion analyses identified a C/EBPδ site in the proximal region of the NGF promoter. C/EBPδ appears to be responsible for the BAR-mediated activation of the NGF gene in vivo, since CLE elicited a time-dependent increase in C/EBPδ-binding activity in the cerebral cortex only. Our data suggest that, while AP-1 may regulate basal levels of NGF expression, C/EBPδ is a critical component determining the area-specific expression of NGF in response to BAR stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism underlying the generation of soluble growth hormone binding protein (GHBP) probably differs among species. In rats and mice, it involves an alternatively spliced mRNA, whereas in rabbits, it involves limited proteolysis of the membrane-bound growth hormone receptor (GHR). In humans, this latter mechanism is favored, as no transcript coding for a soluble GHR has been detected so far. To test this hypothesis, we analyzed COS-7 cells transiently expressing the full-length human (h) GHR and observed specific GH-binding activity in the cell supernatants. Concomitantly, an alternatively spliced form in the cytoplasmic domain of GHR, hGHR-tr, was isolated from several human tissues. hGHR-tr is identical in sequence to hGHR, except for a 26-bp deletion leading to a stop codon at position 280, thereby truncating 97.5% of the intracellular domain of the receptor protein. When compared with hGHR, hGHR-tr showed a significantly increased capacity to generate a soluble GHBP. Interestingly, this alternative transcript is also expressed in liver from rabbits, mice, and rats, suggesting that, in these four species, proteolysis of the corresponding truncated transmembrane GHR is a common mechanism leading to GHBP generation. These findings support the hypothesis that GHBP may at least partly result from alternative splicing of the region encoding the intracellular domain and that the absence of a cytoplasmic domain may be involved in increased release of GHBP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homopolymers of alpha 2,8-linked N-acetylneuraminic acid [poly(alpha 2,8-Neu5Ac)] of the neural cell adhesion molecule NCAM have been shown to be temporally expressed during lung development and represent a marker for small cell lung carcinoma. We report the presence of a further polysialic acid in lung that consists of oligo/polymers of alpha 2,8-linked deaminoneuraminic acid residues [poly (alpha 2,8-KDN)], as detected with a monoclonal antibody in conjunction with a specific sialidase. Although the various cell types forming the bronchi, alveolar septs, and blood vessels were positive for poly (alpha 2,8-KDN) by immunohistochemistry, this polysialic acid was found on a single 150-kDa glycoprotein by immunoblot analysis. The poly(alpha 2,8-KDN)-bearing glycoprotein was not related to an NCAM protein based on immunochemical criteria. The expression of the poly (alpha 2,8-KDN) was developmentally regulated as evidenced by its gradual disappearance in the rat lung parenchyma commencing 1 week after birth. In adult lung the blood vessel endothelia and the smooth muscle fibers of both blood vessels and bronchi were positive but not the bronchial and alveolar epithelium. The poly (alpha 2,8-KDN)-bearing 150-kDa glycoprotein became reexpressed in various histological types of lung carcinomas and cell lines derived from them and represents a new oncodevelopmental antigen in lung.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nucleotide sequence of the human alpha-albumin gene, including 887 bp of the 5'-flanking region and 1311 bp of the 3-flanking region (24,454 in total), was determined from three overlapping lambda phage clones. The sequence spans 22,256 bp from the cap site to the polyadenylylation site, revealing a gene structure of 15 exons separated by 14 introns. The methionine initiation codon ATG is within exon 1; the termination codon TGA is within exon 14. Exon 15 is entirely untranslated and contains the polyadenylylation signal AATAAA. The deduced polypeptide chain is composed of a 21-amino-acid leader peptide, followed by 578 amino acids of the mature protein. There are seven repetitive DNA elements (Alu and Kpn) in the introns and 3-flanking region. The sizes of the 15 alpha-albumin exons match closely those of the albumin, alpha-fetoprotein, and vitamin D-binding protein genes. The exons are symmetrically placed within the three domains of the individual proteins, and they share a characteristic codon splitting pattern that is conserved among members of the gene family. The results provide strong evidence that alpha-albumin belongs to, and most likely completes with, the serum albumin gene family. Based on structural similarity, alpha-albumin appears to be most closely related to alpha-fetoprotein. The complete structure of this family of four tandemly linked genes provides a well-characterized approximately 200 kb locus in the 4q subcentromeric region of the human genome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The beta-adrenergic receptor kinase (betaARK) is the prototypical member of the family of cytosolic kinases that phosphorylate guanine nucleotide binding-protein-coupled receptors and thereby trigger uncoupling between receptors and guanine nucleotide binding proteins. Herein we show that this kinase is subject to phosphorylation and regulation by protein kinase C (PKC). In cell lines stably expressing alpha1B- adrenergic receptors, activation of these receptors by epinephrine resulted in an activation of cytosolic betaARK. Similar data were obtained in 293 cells transiently coexpressing alpha1B- adrenergic receptors and betaARK-1. Direct activation of PKC with phorbol esters in these cells caused not only an activation of cytosolic betaARK-1 but also a translocation of betaARK immunoreactivity from the cytosol to the membrane fraction. A PKC preparation purified from rat brain phospborylated purified recombinant betaARK-1 to a stoichiometry of 0.86 phosphate per betaARK-1. This phosphorylation resulted in an increased activity of betaARK-1 when membrane-bound rhodopsin served as its substrate but in no increase of its activity toward a soluble peptide substrate. The site of phosphorylation was mapped to the C terminus of betaARK-1. We conclude that PKC activates betaARK by enhancing its translocation to the plasma membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Golgi alpha-mannosidase II (alpha-MII) is an enzyme involved in the processing of N-linked glycans. Using a previously isolated murine cDNA clone as a probe, we have isolated cDNA clones encompassing the human alpha-MII cDNA open reading frame and initiated isolation of human genomic clones. During the isolation of genomic clones, genes related to that encoding alpha-MII were isolated. One such gene was found to encode an isozyme, designated alpha-MIIx. A 5-kb cDNA clone encoding alpha-MIIx was then isolated from a human melanoma cDNA library. However, comparison between alpha-MIIx and alpha-MII cDNAs suggested that the cloned cDNA encodes a truncated polypeptide with 796 amino acid residues, while alpha-MII consists of 1144 amino acid residues. To reevaluate the sequence of alpha-MIIx cDNA, polymerase chain reaction (PCR) was performed with lymphocyte mRNAs. Comparison of the sequence of PCR products with the alpha-MIIx genomic sequence revealed that alternative splicing of the alpha-MIIx transcript can result in an additional transcript encoding a 1139-amino acid polypeptide. Northern analysis showed transcription of alpha-MIIx in various tissues, suggesting that the alpha-MIIx gene is a housekeeping gene. COS cells transfected with alpha-MIIx cDNA containing the full-length open reading frame showed an increase of alpha-mannosidase activity. The alpha-MIIx gene was mapped to human chromosome 15q25, whereas the alpha-MII gene was mapped to 5q21-22.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The type 1 angiotensin II (AT1) receptor is well characterized but the type 2 (AT2) receptor remains an enigma. We tested the hypothesis that the AT2 receptor can modulate the growth of vascular smooth muscle cells by transfecting an AT2 receptor expression vector into the balloon-injured rat carotid artery and observed that overexpression of the AT2 receptor attenuated neointimal formation. In cultured smooth muscle cells, AT2 receptor transfection reduced proliferation and inhibited mitogen-activated protein kinase activity. Furthermore, we demonstrated that the AT2 receptor mediated the developmentally regulated decrease in aortic DNA synthesis at the latter stages of gestation. These results suggest that the AT2 receptor exerts an antiproliferative effect, counteracting the growth action of AT1 receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 5' flanking region of the human alpha-globin gene is highly G + C rich and contains multiple copies of the consensus sequence for the Sp1 binding site. We investigated the role of this G + C-rich region in augmenting alpha-globin promoter activity in the presence of the far-upstream alpha-globin enhancer, HS-40. We show that in transiently transfected erythroid cells, deletion of the alpha-globin G + C-rich 5' flanking region has no effect on alpha-globin promoter activity. However, upon stable integration into chromatin, deletion of this region causes a nearly 90% decrease in promoter activity compared with expression from an alpha-globin promoter retaining this region. These results suggest that the alpha-globin G + C-rich 5' flanking region augments alpha-globin promoter activity in a chromatin-dependent manner. We further show that this G + C-rich region is required for the activation of alpha-globin gene expression during erythroid differentiation. Finally, we show by both footprint analysis and functional assays that the ability of the G + C-rich region to increase alpha-globin promoter activity from a stably integrated alpha-globin gene is mediated by its multiple binding sites for the transcription factor Sp1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To assess the role of altered alpha 2 beta 1 integrin expression in breast cancer, we expressed the alpha 2 beta 1 integrin de novo in a poorly differentiated mammary carcinoma that expressed no detectable alpha 2-integrin subunit. Expression of the alpha 2 beta 1 integrin resulted in a dramatic phenotypic alteration from a fibroblastoid, spindle-shaped, non-contact-inhibited, motile, and invasive cell to an epithelioid, polygonal-shaped, contact-inhibited, less motile, and less invasive cell. Although expression of the alpha 2 subunit did not alter adhesion to collagen, it profoundly altered cell spreading. Re-expression of the alpha 2 beta 1 integrin restored the ability to differentiate into gland-like structures in three-dimensional matrices and markedly reduced the in vivo tumorigenicity of the cells. These results indicate that the consequences of diminished alpha 2 beta 1-integrin expression in the development of breast cancer and, presumably, of other epithelial malignancies are increased tumorigenicity and loss of the differentiated epithelial phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antisense oligodeoxyribonucleotides targeted to the epidermal growth factor (EGF) receptor were encapsulated into liposomes linked to folate via a polyethylene glycol spacer (folate-PEG-liposomes) and efficiently delivered into cultured KB cells via folate receptor-mediated endocytosis. The oligonucleotides were a phosphodiester 15-mer antisense to the EGF receptor (EGFR) gene stop codon (AEGFR2), the same sequence with three phosphorothioate linkages at each terminus (AEGFR2S), a randomized 15-mer control of similar base composition to AEGFR2 (RC15), a 14-mer control derived from a symmetrized Escherichia coli lac operator (LACM), and the 5'-fluorescein-labeled homologs of several of the above. Cellular uptake of AEGFR2 encapsulated in folate-PEG-liposomes was nine times higher than AEGFR2 encapsulated in nontargeted liposomes and 16 times higher than unencapsulated AEGFR2. Treatment of KB cells with AEGFR2 in folate-PEG-liposomes resulted in growth inhibition and significant morphological changes. Curiously, AEGFR2 and AEGFR2S encapsulated in folate-PEG-liposomes exhibited virtually identical growth inhibitory effects, reducing KB cell proliferation by > 90% 48 hr after the cells were treated for 4 hr with 3 microM oligonucleotide. Free AEGFR2 caused almost no growth inhibition, whereas free AEGFR2S was only one-fifth as potent as the folate-PEG-liposome-encapsulated oligonucleotide. Growth inhibition of the oligonucleotide-treated cells was probably due to reduced EGFR expression because indirect immunofluorescence staining of the cells with a monoclonal antibody against the EGFR showed an almost quantitative reduction of the EGFR in cells treated with folate-PEG-liposome-entrapped AEGFR2. These results suggest that antisense oligonucleotide encapsulation in folate-PEG-liposomes promise efficient and tumor-specific delivery and that phosphorothioate oligonucleotides appear to offer no major advantage over native phosphodiester DNA when delivered by this route.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alpha-fetoprotein (AFP) is a commercially important polypeptide with important diagnostic. physiological and immunomodulatory functions. Previous studies into the refolding of this macromolecule are contradictory. and variously suggest that AFP denaturation may be irreversible or that refolding may be achieved by reducing denaturant concentration through dilution but not dialysis. Importantly, these same previous studies do not provide quantitative metrics by which the Success of refolding, and the potential for bioprocess development. can be assessed. Moreover, these same studies do not optimize and control refolding redox potential - an important factor considering that AFP contains 32 cysteines which form 16 disulfide bonds. In this current study, a quantitative comparison of recombinant human AFP (rhAFP) refolding by dilution and dialysis is conducted under optimized redox conditions. rhAFP refolding yields were > 35% (dialysis refolding) and > 75% (dilution refolding) as assessed by RP-HPLC and ELISA, with structural Similarity to the native state confirmed by UV spectroscopy. Dialysis refolding yield was believed to be lower because the gradual reduction in denaturant concentration allowed extended conformational searching. enabling more time for undesirable interaction with other protein molecules and/or the dialysis membrane, leading to a Sub-optimal process outcome. Significant yield sensitivity to redox environment was also observed, emphasizing the importance of physicochemical optimization. This study demonstrates that very high refolding yields can be obtained, for a physiologically relevant protein, with optimized dilution refolding. The study also highlights the quantitative metrics and macromolecular physical spectroscopic 'fingerprints' required to facilitate transition from laboratory to process scale.