857 resultados para Horses in literature.
Resumo:
Biological activities of flavonoids have been extensively reviewed in literature. The biochemical profile of afzelin, kaempferitrin, and pterogynoside acting on reactive oxygen species was investigated in this paper. The flavonoids were able to act as scavengers of the superoxide anion, hypochlorous acid and taurine chloramine. Although flavonoids are naturally occurring substances in plants which antioxidant activities have been widely advertised as beneficial, afzelin, kaempferitrin, and pterogynoside were able to promote cytotoxic effect. In red blood cells this toxicity was enhanced, depending on flavonoids concentration, in the presence of hypochlorous acid, but reduced in the presence of 2,20 -azo-bis(2-amidinopropane) free radical. These flavonoids had also promoted the death of neutrophils, which was exacerbated when the oxidative burst was initiated by phorbol miristate acetate. Therefore, despite their well-known scavenging action toward free radicals and oxidants, these compounds could be very harmful to living organisms through their action over erythrocytes and neutrophils.
Resumo:
Diottix(r) was calibrated at 25 Hz to achieve the frequency indicated in literature as being effective to mobilize the airways secretions. However, the amplitude and frequency of the waves generated by the equipment in different regions of the chest still need to be investigated. The objective of this study was to analyze the frequency and amplitude of waves generated by Diottix(r) in chests of healthy subjects. Diottix(r) was used in the anterior and posterior regions of the chest. The mechanical waves were captured using stethoscopes connected to electret microphones, which were connected to a digital oscilloscope. Frequency and amplitude data were recorded by the stethoscope, positioned in six points in the anterior region and six in the posterior region of the chest, following the positions commonly used in pulmonary auscultation. Signals were recorded and transferred to a computer with software for their analysis. The frequency of waves did not present a significant change (from 24.9 to 26.4 Hz). The wave amplitude in the anterior versus the posterior region in each area of the lung, the upper, middle and lower, had differences. Diottix(r) produces frequencies in the chest according to the calibrated; thus, it can be a complementary resource to bronchial hygiene maneuvers. The amplitudes of waves seem to be affected by other structures like bone parts and heart.
Resumo:
A pretreatment with microwave irradiation was applied to enhance enzyme hydrolysis of corn straw and rice husk immersed in water, aqueous glycerol or alkaline glycerol. Native and pretreated solids underwent enzyme hydrolysis using the extract obtained from the fermentation of Myceliophthora heterothallica, comparing its efficiency with that of the commercial cellulose cocktail Celluclast (R). The highest saccharification yields, for both corn straw and rice husk, were attained when biomass was pretreated in alkaline glycerol, method that has not been previously reported in literature. Moreover, FTIR, TG and SEM analysis revealed a more significant modification in the structure of corn straw subjected to this pretreatment.Highest global yields were attained with the crude enzyme extract, which might be the result of its content in a great variety of hydrolytic enzymes, as revealed zymogram analysis. Moreover, its hydrolysis efficiency can be improved by its supplementation with commercial beta-glucosidase.
Resumo:
Livestock poisoning by plants is a frequent occurrence which determines severe losses, such as the fall in the milk and meat production, the cost of expensive treatments, the state of immunosuppression, or even the animal's death. Cattle ingest toxic plants only when there is food shortage, when they cannot select what they eat, or when they ingest food for preference, which is the case of Hovenia dulcis fruits, very rich in sucrose. This plant is widely distributed in the southern and southeastern Brazilian regions. In literature, there are some cases of severe human liver injury associated with a long-term of H. dulcis leaf and fruit tea intake, and only one report regarding spontaneous poisoning of goats caused by this plant ingestion. However, its toxic effects associated with spontaneous ingestion by cattle have never been reported. This paper reports the first case of spontaneous poisoning in cattle by H. dulcis, which occurred in a dairy farm in southwest Paraná, Brazil. Three cattle individuals showed anorexia, ruminal atony, severe diarrhea and neurological tournament, head pressing, blindness, ataxia, and circling. The necropsy of the animals was done, and the remaining alterations were restricted to the digestive system and brain. The clinical signs presented by the animals are characteristic of polioencephalomalacia (PEM), caused by changes in the thiamine metabolism. Furthermore, clinical signs, gross, and microscopic lesions as well as the large amount of the plant throughout the digestive segment led to a diagnosis.
Resumo:
Mouth lymphoepithelial cyst is rare, with few cases reported in literature. The aim of this article is to describe a clinical case, focusing on clinical and diagnostic aspects, treatment and prognosis. The lesion was one year old and had developed as a fibrous nodule in the jugal mucosa of a 71-year-old leucoderma patient. Considering focal inflammatory fibrous hyperplasia, fibroma and mucocele as differential diagnosis, excisional biopsy was carried out. A cystic cavity limited by pseudostratified epithelium without projections into the conjunctive tissue, with lymphoid tissue within, was microscopically identified. Without postoperative adverse events, the one-year clinical followup confirmed the favorable prognosis of this kind of lesion.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Dynamic conferencing refers to a scenario wherein any subset of users in a universe of users form a conference for sharing confidential information among themselves. The key distribution (KD) problem in dynamic conferencing is to compute a shared secret key for such a dynamically formed conference. In literature, the KD schemes for dynamic conferencing either are computationally unscalable or require communication among users, which is undesirable. The extended symmetric polynomial based dynamic conferencing scheme (ESPDCS) is one such KD scheme which has a high computational complexity that is universe size dependent. In this paper we present an enhancement to the ESPDCS scheme to develop a KD scheme called universe-independent SPDCS (UI-SPDCS) such that its complexity is independent of the universe size. However, the UI-SPDCS scheme does not scale with the conference size. We propose a relatively scalable KD scheme termed as DH-SPDCS that uses the UI-SPDCS scheme and the tree-based group Diffie- Hellman (TGDH) key exchange protocol. The proposed DH-SPDCS scheme provides a configurable trade-off between computation and communication complexity of the scheme.
Resumo:
Based on the concepts of sustainability and knowledge management, this article seeks to identify points of contact between the two themes through an exploratory study of existing literature. The first objective is to find, in international literature, the largest number of papers jointly related to the theme of knowledge management and sustainability. In these documents, the authors looked at the kind of relationship existing between the two themes and what the benefits introduced in organizations are. Based on an ergonomic point of view, the second objective of this article is to analyze the role of the worker (whether at the strategic or operational level) and his importance in this context. The results demonstrate that there is very little literature that addresses the two themes together. The few papers found, however, can be said to show the many advantages of introducing sustainability policies supported by adequate knowledge management. Very little has been studied with regards to the role of workers, which could be interpreted as meaning that little importance is given to the proactive role they may play. On the other hand, there is a high potential for future research in these areas, based on the high level of consideration of workers in knowledge management and sustainability literature, as well as in literature in the areas of ergonomics and sociology.
Resumo:
Objective: To observe the behavior of the plotted vectors on the RXc (R - resistance - and Xc - reactance corrected for body height/length) graph through bioelectrical impedance analysis (BIVA) and phase angle (PA) values in stable premature infants, considering the hypothesis that preterm infants present vector behavior on BIVA suggestive of less total body water and soft tissues, compared to reference data for term infants. Methods: Cross-sectional study, including preterm neonates of both genders, in-patients admitted to an intermediate care unit at a tertiary care hospital. Data on delivery, diet and bioelectrical impedance (800 mA, 50 kHz) were collected. The graphs and vector analysis were performed with the BIVA software. Results: A total of 108 preterm infants were studied, separated according to age (< 7 days and >= 7 days). Most of the premature babies were without the normal range (above the 95% tolerance intervals) existing in literature for term newborn infants and there was a tendency to dispersion of the points in the upper right quadrant, RXc plan. The PA was 4.92 degrees (+/- 2.18) for newborns < 7 days and 4.34 degrees (+/- 2.37) for newborns >= 7 days. Conclusion: Premature infants behave similarly in terms of BIVA and most of them have less absolute body water, presenting less fat free mass and fat mass in absolute values, compared to term newborn infants.
Resumo:
The application of immunobiologics for the rheumatoid arthritis treatment may present as a rare complication the development of inflammatory myopathy. Until this moment, there have been described in literature only seven cases of inhibitors of tumor necrosis factor induced-myositis. In this paper, we report the case of the patient with 39 years-old with eight years of arthritis rheumatoid and that due to refractory to various immunosuppressive drugs, the adalimumab was introduced, and evolved to dermatomyositis status.
Resumo:
Fabry disease (FD) is an X-linked inborn error of glycosphingolipid catabolism that results from mutations in the alpha-galactosidase A (GLA) gene. Evaluating the enzymatic activity in male individuals usually performs the diagnosis of the disease, but in female carriers the diagnosis based only on enzyme assays is often inconclusive. In this work, we analyzed 568 individuals from 102 families with suspect of FD. Overall, 51 families presented 38 alterations in the GLA gene, among which 19 were not previously reported in literature. The alterations included 17 missense mutations, 7 nonsense mutations, 7 deletions, 6 insertions and 1 in the splice site. Six alterations (R112C, R118C, R220X, R227X, R342Q and R356W) occurred at CpG dinucleotides. Five mutations not previously described in the literature (A156D, K237X, A292V, I317S, c.1177_1178insG) were correlated with low GLA enzyme activity and with prediction of molecular damages. From the 13 deletions and insertions, 7 occurred in exons 6 or 7 (54%) and 11 led to the formation of a stop codon. The present study highlights the detection of new genomic alterations in the GLA gene in the Brazilian population, facilitating the selection of patients for recombinant enzyme-replacement trials and offering the possibility to perform prenatal diagnosis. Journal of Human Genetics (2012) 57, 347-351; doi:10.1038/jhg.2012.32; published online 3 May 2012
Resumo:
Objective: To evaluate the systemic blood pressure (BP) during daytime and nighttime in children with sleep breathing disorders (SBD) and compare parameters of BP in children with diagnosis of obstructive sleep apnea syndrome (OSA) to those one with primary snoring (PS). Methods: Children, both genders, aged from 8 to 12 years, with symptoms of SBD realized an overnight polysomnography followed by a 24 h recording of ambulatory BP. Results: All subjects presented with a history of snoring 7 nights per week. Children who have apnea/hipoapnea index >= four or a apnea index >= one presented a mean BP of 93 +/- 7 mmHg and 85 +/- 9 mmHg diurnal and nocturnal respectively whereas children who have a apnea/hipoapnea < four or a apnea index < one presented 90 +/- 7 mmHg and 77 +/- 2 mmHg. Eight children out of fourteen, from OSA group, lost the physiologic nocturnal dipping of the blood pressure. Among OSA children 57% were considered non-dippers. Two (16%) have presented absence of nocturnal dipping among children with primary snoring. The possibility of OSA children loosing physiologic blood pressure dipping was 6.66 higher than the possibilities of patients from PS group. Discussion: Our results indicate that children with sleep apnea syndrome exhibit a higher 24 h blood pressure when compared with those of primary snoring in form of decreased degree of nocturnal dipping and increased levels of diastolic and mean blood pressure, according to previous studies in literature. OSA in children seems to be associated to the development of hypertension or other cardiovascular disease. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Primary stability of stems in cementless total hip replacements is recognized to play a critical role for long-term survival and thus for the success of the overall surgical procedure. In Literature, several studies addressed this important issue. Different approaches have been explored aiming to evaluate the extent of stability achieved during surgery. Some of these are in-vitro protocols while other tools are coinceived for the post-operative assessment of prosthesis migration relative to the host bone. In vitro protocols reported in the literature are not exportable to the operating room. Anyway most of them show a good overall accuracy. The RSA, EBRA and the radiographic analysis are currently used to check the healing process of the implanted femur at different follow-ups, evaluating implant migration, occurance of bone resorption or osteolysis at the interface. These methods are important for follow up and clinical study but do not assist the surgeon during implantation. At the time I started my Ph.D Study in Bioengineering, only one study had been undertaken to measure stability intra-operatively. No follow-up was presented to describe further results obtained with that device. In this scenario, it was believed that an instrument that could measure intra-operatively the stability achieved by an implanted stem would consistently improve the rate of success. This instrument should be accurate and should give to the surgeon during implantation a quick answer concerning the stability of the implanted stem. With this aim, an intra-operative device was designed, developed and validated. The device is meant to help the surgeon to decide how much to press-fit the implant. It is essentially made of a torsional load cell, able to measure the extent of torque applied by the surgeon to test primary stability, an angular sensor that measure the relative angular displacement between stem and femur, a rigid connector that enable connecting the device to the stem, and all the electronics for signals conditioning. The device was successfully validated in-vitro, showing a good overall accuracy in discriminating stable from unstable implants. Repeatability tests showed that the device was reliable. A calibration procedure was then performed in order to convert the angular readout into a linear displacement measurement, which is an information clinically relevant and simple to read in real-time by the surgeon. The second study reported in my thesis, concerns the evaluation of the possibility to have predictive information regarding the primary stability of a cementless stem, by measuring the micromotion of the last rasp used by the surgeon to prepare the femoral canal. This information would be really useful to the surgeon, who could check prior to the implantation process if the planned stem size can achieve a sufficient degree of primary stability, under optimal press fitting conditions. An intra-operative tool was developed to this aim. It was derived from a previously validated device, which was adapted for the specific purpose. The device is able to measure the relative micromotion between the femur and the rasp, when a torsional load is applied. An in-vitro protocol was developed and validated on both composite and cadaveric specimens. High correlation was observed between one of the parameters extracted form the acquisitions made on the rasp and the stability of the corresponding stem, when optimally press-fitted by the surgeon. After tuning in-vitro the protocol as in a closed loop, verification was made on two hip patients, confirming the results obtained in-vitro and highlighting the independence of the rasp indicator from the bone quality, anatomy and preserving conditions of the tested specimens, and from the sharpening of the rasp blades. The third study is related to an approach that have been recently explored in the orthopaedic community, but that was already in use in other scientific fields. It is based on the vibration analysis technique. This method has been successfully used to investigate the mechanical properties of the bone and its application to evaluate the extent of fixation of dental implants has been explored, even if its validity in this field is still under discussion. Several studies have been published recently on the stability assessment of hip implants by vibration analysis. The aim of the reported study was to develop and validate a prototype device based on the vibration analysis technique to measure intra-operatively the extent of implant stability. The expected advantages of a vibration-based device are easier clinical use, smaller dimensions and minor overall cost with respect to other devices based on direct micromotion measurement. The prototype developed consists of a piezoelectric exciter connected to the stem and an accelerometer attached to the femur. Preliminary tests were performed on four composite femurs implanted with a conventional stem. The results showed that the input signal was repeatable and the output could be recorded accurately. The fourth study concerns the application of the device based on the vibration analysis technique to several cases, considering both composite and cadaveric specimens. Different degrees of bone quality were tested, as well as different femur anatomies and several levels of press-fitting were considered. The aim of the study was to verify if it is possible to discriminate between stable and quasi-stable implants, because this is the most challenging detection for the surgeon in the operation room. Moreover, it was possible to validate the measurement protocol by comparing the results of the acquisitions made with the vibration-based tool to two reference measurements made by means of a validated technique, and a validated device. The results highlighted that the most sensitive parameter to stability is the shift in resonance frequency of the stem-bone system, showing high correlation with residual micromotion on all the tested specimens. Thus, it seems possible to discriminate between many levels of stability, from the grossly loosened implant, through the quasi-stable implants, to the definitely stable one. Finally, an additional study was performed on a different type of hip prosthesis, which has recently gained great interest thus becoming fairly popular in some countries in the last few years: the hip resurfacing prosthesis. The study was motivated by the following rationale: although bone-prosthesis micromotion is known to influence the stability of total hip replacement, its effect on the outcome of resurfacing implants has not been investigated in-vitro yet, but only clinically. Thus the work was aimed at verifying if it was possible to apply to the resurfacing prosthesis one of the intraoperative devices just validated for the measurement of the micromotion in the resurfacing implants. To do that, a preliminary study was performed in order to evaluate the extent of migration and the typical elastic movement for an epiphyseal prosthesis. An in-vitro procedure was developed to measure micromotions of resurfacing implants. This included a set of in-vitro loading scenarios that covers the range of directions covered by hip resultant forces in the most typical motor-tasks. The applicability of the protocol was assessed on two different commercial designs and on different head sizes. The repeatability and reproducibility were excellent (comparable to the best previously published protocols for standard cemented hip stems). Results showed that the procedure is accurate enough to detect micromotions of the order of few microns. The protocol proposed was thus completely validated. The results of the study demonstrated that the application of an intra-operative device to the resurfacing implants is not necessary, as the typical micromovement associated to this type of prosthesis could be considered negligible and thus not critical for the stabilization process. Concluding, four intra-operative tools have been developed and fully validated during these three years of research activity. The use in the clinical setting was tested for one of the devices, which could be used right now by the surgeon to evaluate the degree of stability achieved through the press-fitting procedure. The tool adapted to be used on the rasp was a good predictor of the stability of the stem. Thus it could be useful for the surgeon while checking if the pre-operative planning was correct. The device based on the vibration technique showed great accuracy, small dimensions, and thus has a great potential to become an instrument appreciated by the surgeon. It still need a clinical evaluation, and must be industrialized as well. The in-vitro tool worked very well, and can be applied for assessing resurfacing implants pre-clinically.
Resumo:
The main problem connected to cone beam computed tomography (CT) systems for industrial applications employing 450 kV X-ray tubes is the high amount of scattered radiation which is added to the primary radiation (signal). This stray radiation leads to a significant degradation of the image quality. A better understanding of the scattering and methods to reduce its effects are therefore necessary to improve the image quality. Several studies have been carried out in the medical field at lower energies, whereas studies in industrial CT, especially for energies up to 450 kV, are lacking. Moreover, the studies reported in literature do not consider the scattered radiation generated by the CT system structure and the walls of the X-ray room (environmental scatter). In order to investigate the scattering on CT projections a GEANT4-based Monte Carlo (MC) model was developed. The model, which has been validated against experimental data, has enabled the calculation of the scattering including the environmental scatter, the optimization of an anti-scatter grid suitable for the CT system, and the optimization of the hardware components of the CT system. The investigation of multiple scattering in the CT projections showed that its contribution is 2.3 times the one of primary radiation for certain objects. The results of the environmental scatter showed that it is the major component of the scattering for aluminum box objects of front size 70 x 70 mm2 and that it strongly depends on the thickness of the object and therefore on the projection. For that reason, its correction is one of the key factors for achieving high quality images. The anti-scatter grid optimized by means of the developed MC model was found to reduce the scatter-toprimary ratio in the reconstructed images by 20 %. The object and environmental scatter calculated by means of the simulation were used to improve the scatter correction algorithm which could be patented by Empa. The results showed that the cupping effect in the corrected image is strongly reduced. The developed CT simulation is a powerful tool to optimize the design of the CT system and to evaluate the contribution of the scattered radiation to the image. Besides, it has offered a basis for a new scatter correction approach by which it has been possible to achieve images with the same spatial resolution as state-of-the-art well collimated fan-beam CT with a gain in the reconstruction time of a factor 10. This result has a high economic impact in non-destructive testing and evaluation, and reverse engineering.
Resumo:
Every seismic event produces seismic waves which travel throughout the Earth. Seismology is the science of interpreting measurements to derive information about the structure of the Earth. Seismic tomography is the most powerful tool for determination of 3D structure of deep Earth's interiors. Tomographic models obtained at the global and regional scales are an underlying tool for determination of geodynamical state of the Earth, showing evident correlation with other geophysical and geological characteristics. The global tomographic images of the Earth can be written as a linear combinations of basis functions from a specifically chosen set, defining the model parameterization. A number of different parameterizations are commonly seen in literature: seismic velocities in the Earth have been expressed, for example, as combinations of spherical harmonics or by means of the simpler characteristic functions of discrete cells. With this work we are interested to focus our attention on this aspect, evaluating a new type of parameterization, performed by means of wavelet functions. It is known from the classical Fourier theory that a signal can be expressed as the sum of a, possibly infinite, series of sines and cosines. This sum is often referred as a Fourier expansion. The big disadvantage of a Fourier expansion is that it has only frequency resolution and no time resolution. The Wavelet Analysis (or Wavelet Transform) is probably the most recent solution to overcome the shortcomings of Fourier analysis. The fundamental idea behind this innovative analysis is to study signal according to scale. Wavelets, in fact, are mathematical functions that cut up data into different frequency components, and then study each component with resolution matched to its scale, so they are especially useful in the analysis of non stationary process that contains multi-scale features, discontinuities and sharp strike. Wavelets are essentially used in two ways when they are applied in geophysical process or signals studies: 1) as a basis for representation or characterization of process; 2) as an integration kernel for analysis to extract information about the process. These two types of applications of wavelets in geophysical field, are object of study of this work. At the beginning we use the wavelets as basis to represent and resolve the Tomographic Inverse Problem. After a briefly introduction to seismic tomography theory, we assess the power of wavelet analysis in the representation of two different type of synthetic models; then we apply it to real data, obtaining surface wave phase velocity maps and evaluating its abilities by means of comparison with an other type of parametrization (i.e., block parametrization). For the second type of wavelet application we analyze the ability of Continuous Wavelet Transform in the spectral analysis, starting again with some synthetic tests to evaluate its sensibility and capability and then apply the same analysis to real data to obtain Local Correlation Maps between different model at same depth or between different profiles of the same model.