952 resultados para Horse shows.
Resumo:
Congenital hepatic fibrosis has been described as a lethal disease with monogenic autosomal recessive inheritance in the Swiss Franches-Montagnes horse breed. We performed a genome-wide association study with 5 cases and 12 controls and detected an association on chromosome 20. Subsequent homozygosity mapping defined a critical interval of 952 kb harboring 10 annotated genes and loci including the polycystic kidney and hepatic disease 1 (autosomal recessive) gene (PKHD1). PKHD1 represents an excellent functional candidate as variants in this gene were identified in human patients with autosomal recessive polycystic kidney and hepatic disease (ARPKD) as well as several mouse and rat mutants. Whereas most pathogenic PKHD1 variants lead to polycystic defects in kidney and liver, a small subset of the human ARPKD patients have only liver symptoms, similar to our horses with congenital hepatic fibrosis. The PKHD1 gene is one of the largest genes in the genome with multiple alternative transcripts that have not yet been fully characterized. We sequenced the genomes of an affected foal and 46 control horses to establish a comprehensive list of variants in the critical interval. We identified two missense variants in the PKHD1 gene which were strongly, but not perfectly associated with congenital hepatic fibrosis. We speculate that reduced penetrance and/or potential epistatic interactions with hypothetical modifier genes may explain the imperfect association of the detected PKHD1 variants. Our data thus indicate that horses with congenital hepatic fibrosis represent an interesting large animal model for the liver-restricted subtype of human ARPKD.
Resumo:
BACKGROUND Multiple hypersensitivities (MHS) have been described in humans, cats, and dogs, but not horses. HYPOTHESES Horses suffering from recurrent airway obstruction (RAO), insect bite hypersensitivity (IBH), or urticaria (URT) will have an increased risk of also being affected by another one of these hypersensitivities. This predisposition for MHS also will be associated with decreased shedding of strongylid eggs in feces and with a single nucleotide polymorphism (SNP BIEC2-224511), previously shown to be associated with RAO. ANIMALS The first population (P1) included 119 randomly sampled horses representative of the Swiss sporthorse population; the replication population (P2) included 210 RAO-affected Warmblood horses and 264 RAO-unaffected controls. All horses were Warmbloods, 14 years or older. METHODS Associations between disease phenotypes (RAO, IBH, URT, MHS) fecal egg counts, the SNP BIEC2-224511 as well as management and environmental factors were investigated. RESULTS In P1, RAO-affected horses had a 13.1 times higher odds ratio (OR) of also suffering from IBH (P = .004). In P2, the respective OR was 7.4 (P = .002) and IBH-affected horses also showed a 7.1 times increased OR of concomitantly suffering from URT (P < .001). IBH, URT, and MHS phenotypes were significantly associated with the absence of nematode eggs in the feces. CONCLUSIONS AND CLINICAL IMPORTANCE This is the first report of MHS in horses. Specifically, an increased risk for IBH should be expected in RAO-affected horses.
Resumo:
Genetic predispositions for guttural pouch tympany, recurrent laryngeal neuropathy and recurrent airway obstruction (RAO) are well documented. There is also evidence that exercise-induced pulmonary haemorrhage and infectious diseases of the respiratory tract in horses have a genetic component. The clinical expression of equine respiratory diseases with a genetic basis results from complex interactions between the environment and the genetic make-up of each individual horse. The genetic effects are likely to be due to variations in several genes, i.e. they are polygenic. It is therefore unlikely that single gene tests will be diagnostically useful in these disorders. Genetic profiling panels, combining several genetic factors with an assessment of environmental risk factors, may have greater value, but much work is still needed to uncover diagnostically useful genetic markers or even causative variants for equine respiratory diseases. Nonetheless, chromosomal regions associated with guttural pouch tympany, recurrent laryngeal neuropathy and RAO have been identified. The association of RAO with other hypersensitivities and with resistance to intestinal parasites requires further study. This review aims to provide an overview of the available data and current thoughts on the genetics of equine airway diseases.
Resumo:
The epidemiological situation of strongyle infections in adult horses in Switzerland is characterized by a strong dominance of small strongyles (Cyathostominae) and an overall low level of egg shedding in the faeces. The prevailing attitude towards anthelmintic therapy considers neither husbandry conditions nor pasture hygiene measures. Instead, calendar-based routine medication, comprising usually 3 to 4 annual treatments, is the typical strategy. Such an approach, however, often results in an excessive administration of anthelmintics. With respect to the continuous spread of drug resistant cyathostomins a change of strategy seems inevitable. A consensus has been agreed on between equine parasitologists and clinicians of the Vetsuisse Faculty in Zurich and Berne to focus on the concept of a selective control approach, based on individual faecal egg counts as the central element. It is now recommended that clinically healthy horses (> 4 y) are treated only when their strongyle egg count is equal to or higher than 200 eggs per gram of faeces. A regular analysis of the strongyle population based on larval cultures, the control of drug efficacy, and quarantine measures for incoming horses are mandatory components of the concept. Recent experiences in several pilot farms have indicated that only 4 % of the McMaster analyses resulted in a deworming treatment. For horses that did not receive any nematicidal anthelmintic during the current season, a "safety" treatment is recommended at the end of the grazing period.
Resumo:
A 14-year-old Thoroughbred gelding was presented for chronic colic and weight loss. Transcutaneous and transrectal abdominal ultrasonography revealed distended, thickened small intestine with primary thickening of the muscularis and a focally more thickened loop with an echoic structure crossing the wall from the mucosa to the serosa. Visualization of diffuse thickening of the muscularis (muscular hypertrophy of the small intestine) and a focal lesion (pseudodiverticulum) helped clinicians make informed decisions. This case illustrates the importance of transabdominal and transrectal ultrasonography in horses with chronic colic and the relevance of considering the abnormalities in layering pattern of the intestinal wall.
Resumo:
An 11-year-old Warmblood gelding was presented for inspiratory stridor and dysphagia. Based on history and clinical examination, a solitary mass localised in the oropharynx was suspected. Due to its inaccessibility and defensive behaviour of the horse, it was difficult to visualise this mass either by upper airway endoscopy or by oral examination and the conventional imaging methods (radiology and ultrasound) provided only limited information. Fine needle aspiration cytology was suggestive of lymphoma, but the exact localisation and the extent of tissue infiltration of the tumour could only be defined by magnetic resonance imaging (MRI). MRI has proved to be a very useful diagnostic tool in equine lameness investigation and, as this case illustrates, it has considerable diagnostic potential for soft tissue examination of the equine head.
Resumo:
Testosterone hydroxylation was investigated in human, canine and equine liver microsomes and in human and canine single CYPs. The contribution of the CYP families 1, 2 and 3 was studied using chemical inhibitors. Testosterone metabolites were analyzed by HPLC. The metabolites androstenedione, 6β- and 11β-hydroxytestosterone were found in microsomes of all species, but the pattern of metabolites varied within species. Androstenedione was more prominent in the animal species, and an increase over time was seen in equines. Testosterone hydroxylation was predominantly catalyzed by the CYP3A subfamily in all three species. While CYP2C9 did not metabolise testosterone, the canine ortholog CYP2C21 produced androstenedione. Quercetin significantly inhibited 6β- and 11β-hydroxytestosterone in all species investigated, suggesting that CYP2C8 is involved in testosterone metabolism, whereas sulfaphenazole significantly inhibited the formation of 6β- and 11β-hydroxytestosterone in human microsomes, at 60min in equine microsomes, but not in canine microsomes. A contribution of CYP2B6 in testosterone metabolism was only found in human and equine microsomes. Inhibition of 17β-hydroxysteroid dehydrogenase 2 indicated its involvement in androstenedione formation in humans, increased androstenedione formation was found in equines and no involvement in canines. These findings provide improved understanding of differences in testosterone biotransformation in animal species.
Resumo:
White spotting phenotypes have been intensively studied in horses, and although similar phenotypes occur in the donkey, little is known about the molecular genetics underlying these patterns in donkeys. White spotting in donkeys can range from only a few white areas to almost complete depigmentation and is characterised by a loss of pigmentation usually progressing from a white spot in the hip area. Completely white-born donkeys are rare, and the phenotype is characterised by the complete absence of pigment resulting in pink skin and a white coat. A dominant mode of inheritance has been demonstrated for spotting in donkeys. Although the mode of inheritance for the completely white phenotype in donkeys is not clear, the phenotype shows similarities to dominant white in horses. As variants in the KIT gene are known to cause a range of white phenotypes in the horse, we investigated the KIT gene as a potential candidate gene for two phenotypes in the donkey, white spotting and white. A mutation analysis of all 21 KIT exons identified a missense variant in exon 4 (c.662A>C; p.Tyr221Ser) present only in a white-born donkey. A second variant affecting a splice donor site (c.1978+2T>A) was found exclusively in donkeys with white spotting. Both variants were absent in 24 solid-coloured controls. To the authors' knowledge, this is the first study investigating genetic mechanisms underlying white phenotypes in donkeys. Our results suggest that two independent KIT alleles are probably responsible for white spotting and white in donkeys.
Resumo:
A comprehensive second-generation whole genome radiation hybrid (RH II), cytogenetic and comparative map of the horse genome (2n = 64) has been developed using the 5000rad horse x hamster radiation hybrid panel and fluorescence in situ hybridization (FISH). The map contains 4,103 markers (3,816 RH; 1,144 FISH) assigned to all 31 pairs of autosomes and the X chromosome. The RH maps of individual chromosomes are anchored and oriented using 857 cytogenetic markers. The overall resolution of the map is one marker per 775 kilobase pairs (kb), which represents a more than five-fold improvement over the first-generation map. The RH II incorporates 920 markers shared jointly with the two recently reported meiotic maps. Consequently the two maps were aligned with the RH II maps of individual autosomes and the X chromosome. Additionally, a comparative map of the horse genome was generated by connecting 1,904 loci on the horse map with genome sequences available for eight diverse vertebrates to highlight regions of evolutionarily conserved syntenies, linkages, and chromosomal breakpoints. The integrated map thus obtained presents the most comprehensive information on the physical and comparative organization of the equine genome and will assist future assemblies of whole genome BAC fingerprint maps and the genome sequence. It will also serve as a tool to identify genes governing health, disease and performance traits in horses and assist us in understanding the evolution of the equine genome in relation to other species.
Resumo:
Overall, monogenetic hereditary diseases are less important for the breeding industry than polygenetic diseases because they are relatively rare. For the individual animal, however, these diseases have often a dramatic outcome and many of these diseases presently known are lethal. For several of them the exact pathogenesis is known and DNA-tests are available to confirm the exact diagnosis.
Resumo:
The tobiano white-spotting pattern is one of several known depigmentation phenotypes in horses and is desired by many horse breeders and owners. The tobiano spotting phenotype is inherited as an autosomal dominant trait. Horses that are heterozygous or homozygous for the tobiano allele (To) are phenotypically indistinguishable. A SNP associated with To had previously been identified in intron 13 of the equine KIT gene and was used for an indirect gene test. The test was useful in several horse breeds. However, genotyping this sequence variant in the Lewitzer horse breed revealed that 14% of horses with the tobiano pattern did not show the polymorphism in intron 13 and consequently the test was not useful to identify putative homozygotes for To within this breed. Speculations were raised that an independent mutation might cause the tobiano spotting pattern in this breed. Recently, the putative causative mutation for To was described as a large chromosomal inversion on equine chromosome 3. One of the inversion breakpoints is approximately 70 kb downstream of the KIT gene and probably disrupts a regulatory element of the KIT gene. We obtained genotypes for the intron 13 SNP and the chromosomal inversion for 204 tobiano spotted horses and 24 control animals of several breeds. The genotyping data confirmed that the chromosomal inversion was perfectly associated with the To allele in all investigated horses. Therefore, the new test is suitable to discriminate heterozygous To/+ and homozygous To/To horses in the investigated breeds.
Resumo:
White markings and spotting patterns in animal species are thought to be a result of the domestication process. They often serve for the identification of individuals but sometimes are accompanied by complex pathological syndromes. In the Swiss Franches-Montagnes horse population, white markings increased vastly in size and occurrence during the past 30 years, although the breeding goal demands a horse with as little depigmented areas as possible. In order to improve selection and avoid more excessive depigmentation on the population level, we estimated population parameters and breeding values for white head and anterior and posterior leg markings. Heritabilities and genetic correlations for the traits were high (h(2) > 0.5). A strong positive correlation was found between the chestnut allele at the melanocortin-1-receptor gene locus and the extent of white markings. Segregation analysis revealed that our data fit best to a model including a polygenic effect and a biallelic locus with a dominant-recessive mode of inheritance. The recessive allele was found to be the white trait-increasing allele. Multilocus linkage disequilibrium analysis allowed the mapping of the putative major locus to a chromosomal region on ECA3q harboring the KIT gene.