971 resultados para Homogeneous Kernels
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper we introduce the notion of G-pre-weighted homogeneous map germ, (G is one of Mather's groups A or K.) and show that any G-pre-weighted homogeneous map germ is G-finitely determined. We also give an explicit order, based on the Newton polyhedron of a pre-weighted homogeneous germ of function, such that the topological structure is preserved after perturbations by terms of higher order.
Resumo:
To simplify computer management, several system administrators are adopting advanced techniques to manage software configuration on grids, but the tight coupling between hardware and software makes every PC an individual managed entity, lowering the scalability and increasing the costs to manage hundreds or thousands of PCs. This paper discusses the feasibility of a distributed virtual machine environment, named Flexlab: a new approach for computer management that combines virtualization and distributed system architectures as the basis of a management system. Flexlab is able to extend the coverage of a computer management solution beyond client operating system limitations and also offers a convenient hardware abstraction, decoupling software and hardware, simplifying computer management. The results obtained in this work indicate that FlexLab is able to overcome the limitations imposed by the coupling between software and hardware, simplifying the management of homogeneous and heterogeneous grids. © 2009 IEEE.
Resumo:
Proton radiation therapy is a precise form of radiation therapy, but the avoidance of damage to critical normal tissues and the prevention of geographical tumor misses require accurate knowledge of the dose delivered to the patient and the verification of his position demand a precise imaging technique. In proton therapy facilities, the X-ray Computed Tomography (xCT) is the preferred technique for the planning treatment of patients. This situation has been changing nowadays with the development of proton accelerators for health care and the increase in the number of treated patients. In fact, protons could be more efficient than xCT for this task. One essential difficulty in pCT image reconstruction systems came from the scattering of the protons inside the target due to the numerous small-angle deflections by nuclear Coulomb fields. The purpose of this study is the comparison of an analytical formulation for the determination of beam lateral deflection, based on Molière's theory and Rutherford scattering with Monte Carlo calculations by SRIM 2008 and MCNPX codes. © 2010 American Institute of Physics.
Resumo:
In this article, we investigate the geometry of quasi homogeneous corank one finitely determined map germs from (ℂn+1, 0) to (ℂn, 0) with n = 2, 3. We give a complete description, in terms of the weights and degrees, of the invariants that are associated to all stable singularities which appear in the discriminant of such map germs. The first class of invariants which we study are the isolated singularities, called 0-stable singularities because they are the 0-dimensional singularities. First, we give a formula to compute the number of An points which appear in any stable deformation of a quasi homogeneous co-rank one map germ from (ℂn+1, 0) to (ℂn, 0) with n = 2, 3. To get such a formula, we apply the Hilbert's syzygy theorem to determine the graded free resolution given by the syzygy modules of the associated iterated Jacobian ideal. Then we show how to obtain the other 0-stable singularities, these isolated singularities are formed by multiple points and here we use the relation among them and the Fitting ideals of the discriminant. For n = 2, there exists only the germ of double points set and for n = 3 there are the triple points, named points A1,1,1 and the normal crossing between a germ of a cuspidal edge and a germ of a plane, named A2,1. For n = 3, there appear also the one-dimensional singularities, which are of two types: germs of cuspidal edges or germs of double points curves. For these singularities, we show how to compute the polar multiplicities and also the local Euler obstruction at the origin in terms of the weights and degrees. © 2013 Pushpa Publishing House.
Resumo:
In this work we solved the time dependent Ginzburg-Landau equations to simulate homogeneous superconducting samples with square geometry for several lateral sizes. As a result of such simulations we notice that in the Meissner state, when the vortices do not penetrate the superconductor, the response of small samples are not coincident with that expected for the bulk ones, i.e., 4. πM=. -. H. Thus, we focused our analyzes on the way which the M(. H) curves approximate from the characteristic curve of bulk superconductors. With such study, we built a diagram of the size of the sample as a function of the temperature which indicates a threshold line between macroscopic and bulk behaviors. © 2013 Elsevier B.V.
Resumo:
The energy landscape theory has been an invaluable theoretical framework in the understanding of biological processes such as protein folding, oligomerization, and functional transitions. According to the theory, the energy landscape of protein folding is funneled toward the native state, a conformational state that is consistent with the principle of minimal frustration. It has been accepted that real proteins are selected through natural evolution, satisfying the minimum frustration criterion. However, there is evidence that a low degree of frustration accelerates folding. We examined the interplay between topological and energetic protein frustration. We employed a Cα structure-based model for simulations with a controlled nonspecific energetic frustration added to the potential energy function. Thermodynamics and kinetics of a group of 19 proteins are completely characterized as a function of increasing level of energetic frustration. We observed two well-separated groups of proteins: one group where a little frustration enhances folding rates to an optimal value and another where any energetic frustration slows down folding. Protein energetic frustration regimes and their mechanisms are explained by the role of non-native contact interactions in different folding scenarios. These findings strongly correlate with the protein free-energy folding barrier and the absolute contact order parameters. These computational results are corroborated by principal component analysis and partial least square techniques. One simple theoretical model is proposed as a useful tool for experimentalists to predict the limits of improvements in real proteins. © 2013 Wiley Periodicals, Inc.
Resumo:
O raio conectando dois pontos em um meio anisotrópico, homogêneo por partes e com variação lateral, é calculado utilizando-se técnicas de continuação em 3D. Se combinado com algoritmos para solução do problema de valor inicial, o método pode ser estendido para o cálculo de eventos qS1 e qS2. O algoritmo apresenta a mesma eficiência e robustez que implementações de técnicas de continuação em meios isotrópicos. Rotinas baseadas neste algoritmo têm várias aplicações de interesse. Primeiramente, na modelagem e inversão de parâmetros elásticos na presença de anisotropia. Em segundo lugar, as iterações de Newton-Raphson produzem atributos da frente de onda como vetor vagarosidade e a matrix hessiana do tempo de trânsito, quantidades que permitem determinar o espalhamento geométrico e aproximações de segunda ordem para o tempo de trânsito. Estes atributos permitem calcular as amplitudes ao longo do raio e investigar os efeitos da anisotropia no empilhamento CRS em modelos de velocidade simples.
Resumo:
Mixed calcium and copper oxalates, with different proportions of Ca2+ and Cu2+ ions, were precipitated by dimethyl oxalate hydrolysis in homogeneous solution. The compounds were evaluated by means of scanning electron microscopy, energy dispersive X-ray spectroscopy, thermogravimetry (TG), and differential thermal analysis (DTA). The results suggested quantitative precipitation without solid solution formation. From the TG and DTA curves, it was possible to evaluate the Ca2+ ion proportion in the solid phase and to confirm the precipitation of the individual species.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In the pattern recognition research field, Support Vector Machines (SVM) have been an effectiveness tool for classification purposes, being successively employed in many applications. The SVM input data is transformed into a high dimensional space using some kernel functions where linear separation is more likely. However, there are some computational drawbacks associated to SVM. One of them is the computational burden required to find out the more adequate parameters for the kernel mapping considering each non-linearly separable input data space, which reflects the performance of SVM. This paper introduces the Polynomial Powers of Sigmoid for SVM kernel mapping, and it shows their advantages over well-known kernel functions using real and synthetic datasets.
Resumo:
The role played by H+ hydrido iodocarbonyl and H- hydrido carbonyl ruthenium catalysts in the different catalytic steps of hydroformylation and hydroesterification of olefins, and in the homologation of alcohols has been investigated. The H- hydrido carbonyl species are mainly involved in the activation of olefins and in the hydrogenation of the acyl intermediates to aldehydes and alcohols, whereas the H+ hydrido iodocarbonyl derivatives are involved in the activation of alcohols and other oxygenated substrates, and in their carbonylation to esters. The cooperation between the two species, possible under particular reaction conditions, results in an improvement of the selectivity towards homologation (carbonylation plus hydrogenation) products. Heterogeneous Lewis acid promoters, easily recyclable from the reaction mixture, have also been successfully used in the hydrocarbonylation of alcohols, resulting in an increase of the carbonylation and homologation products. A reaction pathway in agreement with the experimental results is discussed. © 1989.
Resumo:
OBJECTIVE To assess the impact of hyperglycemia in different age-groups of patients with acute myocardial infarction (AM I). RESEARCH DESIGN AND METHODS A total of 2,027 patients with AMI were categorized into one of five age-groups: <50 years (n = 301), >= 50 and <60 (n = 477),>= 60 and <70 (n = 545), >= 70 and <80 (n = 495), and years (n = 209). Hyperglycemia was defined as initial glucose >= 115 mg/dL. RESULTS The adjusted odds ratios for hyperglycemia predicting hospital mortality in groups 1-5 were, respectively, 7.57 (P = 0.004), 3.21 (P 0.046), 3.50 (P = 0.003), 3.20 (P < 0.001.), and 2.16 (P = 0.021). The adjusted P values for correlation between glucose level (as a continuous variable) and mortality were 0.007, <0.001, 0.043, <0.001, and 0.064. The areas under the ROC curves (AUCs) were 0.785, 0.709, 0.657, 0.648, and 0.613. The AUC in group 1 was significantly higher than those in groups 3-5. CONCLUSIONS The impact of hyperglycemia as a risk factor for hospital mortality in AMI is more pronounced in younger patients.
Resumo:
The kinetics of the homogeneous acylation of microcrystalline cellulose, MCC, with carboxylic acid anhydrides with different acyl chain-length (Nc; ethanoic to hexanoic) in LiCl/N,N-dimethylacetamide have been studied by conductivity measurements from 65 to 85 A degrees C. We have employed cyclohexylmethanol, CHM, and trans-1,2-cyclohexanediol, CHD, as model compounds for the hydroxyl groups of the anhydroglucose unit of cellulose. The ratios of rate constants of acylation of primary (CHM; Prim-OH) and secondary (CHD; Sec-OH) groups have been employed, after correction, in order to split the overall rate constants of the reaction of MCC into contributions from the discrete OH groups. For the model compounds, we have found that k((Prim-OH))/k((Sec-OH)) > 1, akin to reactions of cellulose under heterogeneous conditions; this ratio increases as a function of increasing Nc. The overall, and partial rate constants of the acylation of MCC decrease from ethanoic- to butanoic-anhydride and then increase for pentanoic- and hexanoic anhydride, due to subtle changes in- and compensations of the enthalpy and entropy of activation.