964 resultados para High Precision Positioning


Relevância:

80.00% 80.00%

Publicador:

Resumo:

External beam proton radiation therapy has been used since 1975 to treat choroidal melanoma. For tumor location determination during proton radiation treatment, surgical tantalum clips are registered with image data. This report introduces the intraoperative application of an opto-electronic navigation system to determine with high precision the position of the tantalum markers and their spatial relationship to the tumor and anatomical landmarks. The application of the technique in the first 4 patients is described.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Real-time quantitative polymerase chain reaction (qPCR) depends on precise temperature control of the sample during cycling. In the current study, we investigated how temperature variation in plate-based qPCR instruments influences qPCR results. Temperature variation was measured by amplicon melting analysis as a convenient means to assess well-to-well differences. Multiple technical replicates of several SYBR Green I-based qPCR assays allowed correlation of relative well temperature to quantification cycle. We found that inadequate template denaturation results in an inverse correlation and requires increasing the denaturation temperature, adding a DNA destabilizing agent, or pretreating with a restriction enzyme. In contrast, inadequate primer annealing results in a direct correlation and requires lowering the annealing temperature. Significant correlations were found in 18 of 25 assays. The critical nature of temperature-dependent effects was shown in a blinded study of 29 patients for the diagnosis of Prader-Willy and Angelman syndromes, where eight diagnoses were incorrect unless temperature-dependent effects were controlled. A method to detect temperature-dependent effects by pairwise comparisons of replicates in routine experiments is presented and applied. Systematic temperature errors in qPCR instruments can be recognized and their effects eliminated when high precision is required in quantitative genetic diagnostics and critical complementary DNA analyses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Methane and nitrous oxide are important greenhouse gases which show a strong increase in atmospheric mixing ratios since pre-industrial time as well as large variations during past climate changes. The understanding of their biogeochemical cycles can be improved using stable isotope analysis. However, high-precision isotope measurements on air trapped in ice cores are challenging because of the high susceptibility to contamination and fractionation. Here, we present a dry extraction system for combined CH4 and N2O stable isotope analysis from ice core air, using an ice grating device. The system allows simultaneous analysis of δD(CH4) or δ13C(CH4), together with δ15N(N2O), δ18O(N2O) and δ15N(NO+ fragment) on a single ice core sample, using two isotope mass spectrometry systems. The optimum quantity of ice for analysis is about 600 g with typical "Holocene" mixing ratios for CH4 and N2O. In this case, the reproducibility (1σ ) is 2.1‰ for δD(CH4), 0.18‰ for δ13C(CH4), 0.51‰ for δ15N(N2O), 0.69‰ for δ18O(N2O) and 1.12‰ for δ15N(NO+ fragment). For smaller amounts of ice the standard deviation increases, particularly for N2O isotopologues. For both gases, small-scale intercalibrations using air and/or ice samples have been carried out in collaboration with other institutes that are currently involved in isotope measurements of ice core air. Significant differences are shown between the calibration scales, but those offsets are consistent and can therefore be corrected for.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: To design and evaluate a novel computer-assisted, fluoroscopy-based planning and navigation system for minimally invasive ventral spondylodesis of thoracolumbar fractures. MATERIALS AND METHODS: Instruments and an image intensifier are tracked with the SurgiGATE navigation system (Praxim-Medivision). Two fluoroscopic images, one acquired from anterior-posterior (AP) direction and the other from lateral-medial (LM) direction, are used for the complete procedure of planning and navigation. Both of them are calibrated with a custom-made software to recover their projection geometry and to co-register them to a common patient reference coordinate system, which is established by attaching an opto-electronically trackable dynamic reference base (DRB) on the operated vertebra. A bi-planar landmark reconstruction method is used to acquire deep-seated anatomical landmarks such that an intraoperative planning of graft bed can be interactively done. Finally, surgical actions such as the placement of the stabilization devices and the formation of the graft bed using a custom-made chisel are visualized to the surgeon by superimposing virtual instrument representations onto the acquired images. The distance between the instrument tip and each wall of the planned graft bed are calculated on the fly and presented to the surgeon so that the surgeon could formalize the graft bed exactly according to his/her plan. RESULTS: Laboratory studies on phantom and on 27 plastic vertebras demonstrate the high precision of the proposed navigation system. Compared with CT-based measurement, a mean error of 1.0 mm with a standard deviation of 0.1 mm was found. CONCLUSIONS: The proposed computer assisted, fluoroscopy-based planning and navigation system promises to increase the accuracy and reliability of minimally invasive ventral spondylodesis of thoracolumbar fractures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The single electron transistor (SET) is a Coulomb blockade device, whose operation is based on the controlled manipulation of individual electrons. Single electron transistors show immense potential to be used in future ultra lowpower devices, high density memory and also in high precision electrometry. Most SET devices operate at cryogenic temperatures, because the charging energy is much smaller than the thermal oscillations. The room temperature operation of these devices is possible with sub- 10nm nano-islands due to the inverse dependance of charging energy on the radius of the conducting nano-island. The fabrication of sub-10nm features with existing lithographic techniques is a technological challenge. Here we present the results for the first room temperature operating SET device fabricated using Focused Ion Beam deposition technology. The SET device, incorporates an array of tungsten nano-islands with an average diameter of 8nm. The SET devices shows clear Coulomb blockade for different gate voltages at room temperature. The charging energy of the device was calculated to be 160.0 meV; the capacitance per junction was found to be 0.94 atto F; and the tunnel resistance per junction was calculated to be 1.26 G Ω. The tunnel resistance is five orders of magnitude larger than the quantum of resistance (26 k Ω) and allows for the localization of electrons on the tungsten nano-island. The lower capacitance of the device combined with the high tunnel resistance, allows for the Coulomb blockade effects observed at room temperature. Different device configurations, minimizing the total capacitance of the device have been explored. The effect of the geometry of the nano electrodes on the device characteristics has been presented. Simulated device characteristics, based on the soliton model have been discussed. The first application of SET device as a gas sensor has been demonstrated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reconstruction of a cleft lip leads inevitably to scar tissue formation. Scar tissue within the restored oral orbicular muscle might be assessed by quantification of the local contractility of this muscle. Furthermore, information about the contraction capability of the oral orbicular muscle is crucial for planning the revision surgery of an individual patient. We used ultrasound elastography to determine the local deformation (strain) of the upper lip and to differentiate contracting muscle from passive scar tissue. Raw ultrasound data (radio-frequency format; rf-) were acquired, while the lips were brought from normal state into a pout condition and back in normal state, in three patients and three normal individuals. During this movement, the oral orbicular muscle contracts and, consequently, thickens in contrast to scar tissue that will not contract, or even expand. An iterative coarse-to-fine strain estimation method was used to calculate the local tissue strain. Analysis of the raw ultrasound data allows estimation of tissue strain with a high precision. The minimum strain that can be assessed reproducibly is 0.1%. In normal individuals, strain of the orbicular oral muscle was in the order of 20%. Also, a uniform strain distribution in the oral orbicular muscle was found. However, in patients deviating values were found in the region of the reconstruction and the muscle tissue surrounding that. In two patients with a successful reconstruction, strain was reduced by 6% in the reconstructed region with respect to the normal parts of the muscle (from 22% to 16% and from 25% to 19%). In a patient with severe aesthetical and functional disability, strain decreased from 30% in the normal region to 5% in the reconstructed region. With ultrasound elastography, the strain of the oral orbicular muscle can be quantified. In healthy subjects, the strain profiles and maximum strain values in all parts of the muscle were similar. The maximum strain of the muscle during pout was 20% +/- 1%. In surgically repaired cleft lips, decreased deformation was observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-resolution and highly precise age models for recent lake sediments (last 100–150 years) are essential for quantitative paleoclimate research. These are particularly important for sedimentological and geochemical proxies, where transfer functions cannot be established and calibration must be based upon the relation of sedimentary records to instrumental data. High-precision dating for the calibration period is most critical as it determines directly the quality of the calibration statistics. Here, as an example, we compare radionuclide age models obtained on two high-elevation glacial lakes in the Central Chilean Andes (Laguna Negra: 33°38′S/70°08′W, 2,680 m a.s.l. and Laguna El Ocho: 34°02′S/70°19′W, 3,250 m a.s.l.). We show the different numerical models that produce accurate age-depth chronologies based on 210Pb profiles, and we explain how to obtain reduced age-error bars at the bottom part of the profiles, i.e., typically around the end of the 19th century. In order to constrain the age models, we propose a method with five steps: (i) sampling at irregularly-spaced intervals for 226Ra, 210Pb and 137Cs depending on the stratigraphy and microfacies, (ii) a systematic comparison of numerical models for the calculation of 210Pb-based age models: constant flux constant sedimentation (CFCS), constant initial concentration (CIC), constant rate of supply (CRS) and sediment isotope tomography (SIT), (iii) numerical constraining of the CRS and SIT models with the 137Cs chronomarker of AD 1964 and, (iv) step-wise cross-validation with independent diagnostic environmental stratigraphic markers of known age (e.g., volcanic ash layer, historical flood and earthquakes). In both examples, we also use airborne pollutants such as spheroidal carbonaceous particles (reflecting the history of fossil fuel emissions), excess atmospheric Cu deposition (reflecting the production history of a large local Cu mine), and turbidites related to historical earthquakes. Our results show that the SIT model constrained with the 137Cs AD 1964 peak performs best over the entire chronological profile (last 100–150 years) and yields the smallest standard deviations for the sediment ages. Such precision is critical for the calibration statistics, and ultimately, for the quality of the quantitative paleoclimate reconstruction. The systematic comparison of CRS and SIT models also helps to validate the robustness of the chronologies in different sections of the profile. Although surprisingly poorly known and under-explored in paleolimnological research, the SIT model has a great potential in paleoclimatological reconstructions based on lake sediments

Relevância:

80.00% 80.00%

Publicador:

Resumo:

HYPOTHESIS Facial nerve monitoring can be used synchronous with a high-precision robotic tool as a functional warning to prevent of a collision of the drill bit with the facial nerve during direct cochlear access (DCA). BACKGROUND Minimally invasive direct cochlear access (DCA) aims to eliminate the need for a mastoidectomy by drilling a small tunnel through the facial recess to the cochlea with the aid of stereotactic tool guidance. Because the procedure is performed in a blind manner, structures such as the facial nerve are at risk. Neuromonitoring is a commonly used tool to help surgeons identify the facial nerve (FN) during routine surgical procedures in the mastoid. Recently, neuromonitoring technology was integrated into a commercially available drill system enabling real-time monitoring of the FN. The objective of this study was to determine if this drilling system could be used to warn of an impending collision with the FN during robot-assisted DCA. MATERIALS AND METHODS The sheep was chosen as a suitable model for this study because of its similarity to the human ear anatomy. The same surgical workflow applicable to human patients was performed in the animal model. Bone screws, serving as reference fiducials, were placed in the skull near the ear canal. The sheep head was imaged using a computed tomographic scanner and segmentation of FN, mastoid, and other relevant structures as well as planning of drilling trajectories was carried out using a dedicated software tool. During the actual procedure, a surgical drill system was connected to a nerve monitor and guided by a custom built robot system. As the planned trajectories were drilled, stimulation and EMG response signals were recorded. A postoperative analysis was achieved after each surgery to determine the actual drilled positions. RESULTS Using the calibrated pose synchronized with the EMG signals, the precise relationship between distance to FN and EMG with 3 different stimulation intensities could be determined for 11 different tunnels drilled in 3 different subjects. CONCLUSION From the results, it was determined that the current implementation of the neuromonitoring system lacks sensitivity and repeatability necessary to be used as a warning device in robotic DCA. We hypothesize that this is primarily because of the stimulation pattern achieved using a noninsulated drill as a stimulating probe. Further work is necessary to determine whether specific changes to the design can improve the sensitivity and specificity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[1] Two millimeter-sized hydrothermal monazites from an open fissure (cleft) that developed late during a dextral transpressional deformation event in the Aar Massif, Switzerland, have been investigated using electron microprobe and ion probe. The monazites are characterized by high Th/U ratios typical of other hydrothermal monazites. Deformation events in the area have been subdivided into three phases: (D1) main thrusting including formation of a new schistosity, (D2) dextral transpression, and (D3) local crenulation including development of a new schistosity. The two younger deformational structures are related to a subvertically oriented intermediate stress axis, which is characteristic for strike slip deformation. The inferred stress environment is consistent with observed kinematics and the opening of such clefts. Therefore, the investigated monazite-bearing cleft formed at the end of D2 and/or D3, and during dextral movements along NNW dipping planes. Interaction of cleft-filling hydrothermal fluid with wall rock results in rare earth element (REE) mineral formation and alteration of the wall rock. The main newly formed REE minerals are Y-Si, Y-Nb-Ti minerals, and monazite. Despite these mineralogical changes, the bulk chemistry of the system remains constant and thus these mineralogical changes require redistribution of elements via a fluid over short distances (centimeter). Low-grade alteration enables local redistribution of REE, related to the stability of the accessory phases. This allows high precision isotope dating of cleft monazite. 232Th/208Pb ages are not affected by excess Pb and yield growth domain ages between 8.03 ± 0.22 and 6.25 ± 0.60 Ma. Monazite crystallization in brittle structures is coeval or younger than 8 Ma zircon fission track data and hence occurred below 280°C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Displacements of the Earth’s surface caused by tidal and non-tidal loading forces are relevant in high-precision space geodesy. Some of the corrections are recommended by the international scientific community to be applied at the observation level, e.g., ocean tidal loading (OTL) and atmospheric tidal loading (ATL). Non-tidal displacement corrections are in general recommended not to be applied in the products of the International Earth Rotation and Reference Systems Service, in particular atmospheric non-tidal loading (ANTL), oceanic and hydrological non-tidal corrections. We assess and compare the impact of OTL, ATL and ANTL on SLR-derived parameters by reprocessing 12 years of SLR data considering and ignoring individual corrections. We show that loading displacements have an influence not only on station long-term stability, but also on geocenter coordinates, Earth Rotation Parameters, and satellite orbits. Applying the loading corrections reduces the amplitudes of annual signals in the time series of geocenter and station coordinates. The general improvement of the SLR station 3D coordinate repeatability when applying OTL, ATL and ANTL corrections are 19.5 %, 0.2 % and 3.3 % respectively, w.r.t. the solutions without loading corrections. ANTL corrections play a crucial role in the combination of optical (SLR) and microwave (GNSS, VLBI, DORIS) space geodetic observation techniques, because of the so-called Blue-Sky effect: SLR measurements can be carried out only under cloudless sky conditions—typically during high air pressure conditions, when the Earth’s crust is deformed, whereas microwave observations are weather-independent. Thus, applying the loading corrections at the observation level improves SLR-derived products as well as the consistency with microwave-based results. We assess the Blue-Sky effect on SLR stations and the consistency improvement between GNSS and SLR solutions when ANTL corrections are included. The omission of ANTL corrections may lead to inconsistencies between SLR and GNSS solutions of up to 2.5 mm for inland stations. As a result, the estimated GNSS–SLR coordinate differences correspond better to the local ties at the co-located stations when applying ANTL corrections.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The volcanic rocks of the Rhön area (Central European Volcanic Province, Germany) belong to a moderately alkali basaltic suite that is associated with minor tephriphonolites, phonotephrites, tephrites, phonolites and trachytes. Based on isotope sytematics (87Sr/86Sr: 0.7033–0.7042; 143Nd/144Nd: 0.51279–0.51287; 206Pb/204Pb: 19.1–19.5), the inferred parental magmas formed by variable degrees of partial melting of a common asthenospheric mantle source (EAR: European Asthenospheric Reservoir of Cebriá and Wilson, 1995). Tephrites, tephriphonolites, phonotephrites, phonolites and trachytes show depletions and enrichments in some trace elements (Sr, Ba, Nb, Zr, Y) indicating that they were generated by broadly similar differentiation processes that were dominated by fractionation of olivine, clinopyroxene, amphibole, apatite and titaniferous magnetite ± plagioclase ± alkalifeldspar. The fractionated samples seem to have evolved by two distinct processes. One is characterized by pure fractional crystallization indicated by increasing Nb (and other incompatible trace element) concentrations at virtually constant 143Nd/144Nd ~ 0.51280 and 87Sr/86Sr ~ 0.7035. The other process involved an assimilation–fractional crystallization (AFC) process where moderate assimilation to crystallization rates produced evolved magmas characterized by higher Nb concentrations at slightly lower 143Nd/144Nd down to 0.51275. Literature data for some of the evolved rocks show more variable 87Sr/86Sr ranging from 0.7037 to 0.7089 at constant 143Nd/144Nd ~ 0.51280. These features may result from assimilation of upper crustal rocks by highly differentiated low-Sr (< 100 ppm Sr) lavas. However, based on the displacement of the differentiated rocks from this study towards lower 143Nd/144Nd ratios and modeled AFC processes in 143Nd/144Nd vs. 87Sr/86Sr and 207Pb/204Pb vs. 143Nd/144Nd space assimilation of lower crustal rocks seems more likely. The view that assimilation of lower crustal rocks played a role is confirmed by high-precision double-spike Pb isotope data that reveal higher 207Pb/204Pb ratios (15.62–15.63) in the differentiated rocks than in the primitive basanites (15.58–15.61). This is compatible with incorporation of radiogenic Pb from lower crustal xenoliths (207Pb/204Pb: 15.63–15.69) into the melt. However, 206Pb/204Pb ratios are similar for the differentiated rocks (19.13–19.35) and the primitive basanites (19.12–19.55) implying that assimilation involved an ancient crustal end member with a higher U/Pb ratio than the mantle source of the basanites. In addition, alteration-corrected δ18O values of the differentiated rocks range from c. 5 to 7‰ which is the same range as observed in the primitive alkaline rocks. This study confirms previous interpretations that highlighted the role of AFC processes in the evolution of alkaline volcanic rocks in the Rhön area of the Central European Volcanic Province.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Methane is a strong greenhouse gas and large uncertainties exist concerning the future evolution of its atmospheric abundance. Analyzing methane atmospheric mixing and stable isotope ratios in air trapped in polar ice sheets helps in reconstructing the evolution of its sources and sinks in the past. This is important to improve predictions of atmospheric CH4 mixing ratios in the future under the influence of a changing climate. The aim of this study is to assess whether past atmospheric δ13C(CH4) variations can be reliably reconstructed from firn air measurements. Isotope reconstructions obtained with a state of the art firn model from different individual sites show unexpectedly large discrepancies and are mutually inconsistent. We show that small changes in the diffusivity profiles at individual sites lead to strong differences in the firn fractionation, which can explain a large part of these discrepancies. Using slightly modified diffusivities for some sites, and neglecting samples for which the firn fractionation signals are strongest, a combined multi-site inversion can be performed, which returns an isotope reconstruction that is consistent with firn data. However, the isotope trends are lower than what has been concluded from Southern Hemisphere (SH) archived air samples and high-accumulation ice core data. We conclude that with the current datasets and understanding of firn air transport, a high precision reconstruction of δ13C of CH4 from firn air samples is not possible, because reconstructed atmospheric trends over the last 50 yr of 0.3–1.5 ‰ are of the same magnitude as inherent uncertainties in the method, which are the firn fractionation correction (up to ~2 ‰ at individual sites), the Kr isobaric interference (up to ~0.8 ‰, system dependent), inter-laboratory calibration offsets (~0.2 ‰) and uncertainties in past CH4 levels (~0.5 ‰).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plants exhibit life-long organogenic and histogenic activity in a specialised organ, the shoot apical meristem. Leaves and flowers are formed within the ring-shaped peripheral zone, which surrounds the central zone, the site of the stem cells. We have undertaken a series of high-precision laser ablation and microsurgical tissue removal experiments to test the functions of different parts of the tomato meristem, and to reveal their interactions. Ablation of the central zone led to ectopic expression of the WUSCHEL gene at the periphery, followed by the establishment of a new meristem centre. After the ablation of the central zone, organ formation continued without a lag. Thus, the central zone does not participate in organogenesis, except as the ultimate source of founder cells. Microsurgical removal of the external L-1 layer induced periclinal cell divisions and terminal differentiation in the subtending layers. In addition, no organs were initiated in areas devoid of L-1, demonstrating an important role of the L-1 in organogenesis. L-1 ablation had only local effects, an observation that is difficult to reconcile with phyllotaxis theories that invoke physical tension operating within the meristem as a whole. Finally, regeneration of L-1 cells was never observed after ablation. This shows that while the zones of the meristem show a remarkable capacity to regenerate after interference, elimination of the L-1 layer is irreparable and causes terminal differentiation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a first step to obtain a proxy record of past climatic events (including the El Ni (n) over tildeo-Southern Oscillation) in the normally aseasonal tropical environment of Sabah, a radial segment from a recently fallen dipterocarp (Shorea Superba) was radiocarbon dated and subjected to carbon isotope analysis. The high-precision radiocarbon results fell into the ambiguous modern plateau where several calibrated dates can exist for each sample. Dating was achieved by wiggle matching using a Bayesian approach to calibration. Using the defined growth characteristics of Shorea superba, probability density distributions were calculated and improbable dates rejected. It was found that the tree most likely started growing around AD 1660-1685. A total of 173 apparent growth increments were measured and, therefore, it could be determined that the tree formed one ring approximately every two years. Stable carbon isotope values were obtained from resin-extracted wholewood from each ring. Carbon cycling is evident in the `juvenile effect', resulting from the assimilation of respired carbon dioxide and lower light levels below the canopy, and in the `anthropogenic effect' caused by increased industrial activity in the late-nineteenth and twentieth centuries. This study demonstrates that palaeoenvironmental information can be obtained from trees growing in aseasonal environments, where climatic conditions prevent the formation of well-defined annual rings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract. During the last decade mobile communications increasingly became part of people's daily routine. Such usage raises new challenges regarding devices' battery lifetime management when using most popular wireless access technologies, such as IEEE 802.11. This paper investigates the energy/delay trade-off of using an end-user driven power saving approach, when compared with the standard IEEE 802.11 power saving algorithms. The assessment was conducted in a real testbed using an Android mobile phone and high-precision energy measurement hardware. The results show clear energy benefits of employing user-driven power saving techniques, when compared with other standard approaches.