927 resultados para Hepatic drug metabolism
Resumo:
PURPOSE: To test if a water extract of Coleus barbatus (WEB) has any effect on weight gain, food energy utilization and lipid metabolism in young rats with obstructive cholestasis. METHODS: Forty 21 day old (P21) Wistar rats, in groups of 10, were submitted to one of the following treatments: a sham operation with daily water or WEB administration, double ligature and resection of the bile duct with daily water or WEB administration. At P49 they were submitted for euthanasia when the following were determined: ingested feed (IF), energy utilization (EU) and weight gain (WG) from P29 to P49, together with total serum cholesterol (TC) and triacylglycerol (TG) concentrations, liver wet weight (LWW) and fat content (LFC). Two Way ANOVA and the S.N.K. test for paired comparisons were employed to study the effects of cholestasis and those of WEB and their interactions (p < or = 0.05). RESULTS: Cholestasis, independently of WEB, and WEB, independently of cholestasis both reduced IF, EU, and WG but there was no significant interaction between the two factors. Cholestasis, independently of WEB, increased LWW, LFC, the TC and TG The WEB, independently of cholestasis, reduced these values, and there was a significant interaction between the two factors; such that these effects were more accentuated in animals with cholestasis. CONCLUSION: The WEB reduced IF, WG, and EU, both in the presence and absence of cholestasis in the same proportion. It also partially inhibited the increase in LWW, LFC, TC and TG caused by cholestasis.
Resumo:
Recent lines of evidence suggest that the beneficial effects of olive oil are not only related to its high content of oleic acid, but also to the antioxidant potential of its polyphenols. The aim of this work was determine the effects of olive oil and its components, oleic acid and the polyphenol dihydroxyphenylethanol (DPE), on serum lipids, oxidative stress, and energy metabolism on cardiac tissue. Twenty four male Wistar rats, 200 g, were divided into the following 4 groups (n = 6): control (C), OO group that received extra-virgin olive oil (7.5 mL/kg), OA group was treated with oleic acid (3.45 mL/kg), and the DPE group that received the polyphenol DPE (7.5 mg/kg). These components were administered by gavage over 30 days, twice a week. All animals were provided with food and water ad libitum The results show that olive oil was more effective than its isolated components in improving lipid profile, elevating high-density lipoprotein, and diminishing low-density lipoprotein cholesterol concentrations. Olive oil induced decreased antioxidant Mn-superoxide dismutase activity and diminished protein carbonyl concentration, indicating that olive oil may exert direct antioxidant effect on myocardium. DPE, considered as potential antioxidant, induced elevated aerobic metabolism, triacylglycerols, and lipid hydroperoxides concentrations in cardiac muscle, indicating that long-term intake of this polyphenol may induce its undesirable pro-oxidant activity on myocardium. © 2006 NRC Canada.
Resumo:
There is high interest in the natural products properties due to their use in popular medicine. Agaricus blazei Murrill ss. Heinem. (Ab) is native to Brazil and has been widely disseminated because its medicinal properties. In the present study, the genotoxic and antigenotoxic potential of Ab extracts were investigated using the comet assay. The cells utilized were the non drug-metabolizing line CHO-k1 (Chinese hamster ovary) and the drug-metabolizing line HTC (rat hepatoma). Cells were treated for 3 h in the absence of fetal bovain serum (FBS) with methanolic, hexanic and n-butanolic extracts at 50 μg/ml and 0.75% aqueous extract to test for genotoxicity. Antigenotoxic effects of extracts were determined in cells exposed to the DNA damage inducing agent ethyl methanesulfonate under simultaneous or simultaneous with 1 h pre-incubation conditions. The extracts did not show genotoxicity in HTC, while they were genotoxic in CHO-k1. No antigenotoxic effect was observed with any extract under any condition. These results demonstrate that the metabolism in presence or in absence has a direct influence on the genotoxicity of these extracts. © 2006 The Japan Mendel Society.
Resumo:
The pyrH-encoded uridine 5′-monophosphate kinase (UMPK) is involved in both de novo and salvage synthesis of DNA and RNA precursors. Here we describe Mycobacterium tuberculosis UMPK (MtUMPK) cloning and expression in Escherichia coli. N-terminal amino acid sequencing and electrospray ionization mass spectrometry analyses confirmed the identity of homogeneous MtUMPK. MtUMPK catalyzed the phosphorylation of UMP to UDP, using ATP-Mg 2+ as phosphate donor. Size exclusion chromatography showed that the protein is a homotetramer. Kinetic studies revealed that MtUMPK exhibits cooperative kinetics towards ATP and undergoes allosteric regulation. GTP and UTP are, respectively, positive and negative effectors, maintaining the balance of purine versus pyrimidine synthesis. Initial velocity studies and substrate(s) binding measured by isothermal titration calorimetry suggested that catalysis proceeds by a sequential ordered mechanism, in which ATP binds first followed by UMP binding, and release of products is random. As MtUMPK does not resemble its eukaryotic counterparts, specific inhibitors could be designed to be tested as antitubercular agents. © 2010 Elsevier Inc. All rights reserved.
Resumo:
Sickle Cell Disease (SCD) is one of the most prevalent hematological diseases in the world. Despite the immense progress in molecular knowledge about SCD in last years few therapeutical sources are currently available. Nowadays the treatment is performed mainly with drugs such as hydroxyurea or other fetal hemoglobin inducers and chelating agents. This review summarizes current knowledge about the treatment and the advancements in drug design in order to discover more effective and safe drugs. Patient monitoring methods in SCD are also discussed. © 2011 Bentham Science Publishers Ltd.
Resumo:
Chronic and excessive alcohol consumption has been related to an increased risk of several cancers, including that of the liver; however, studies in animal models have yet to conclusively determine whether ethanol acts as a tumor promoter in hepatic tumorigenesis. We examined whether prolonged alcohol consumption could act as a hepatic tumor promoter after initiation by diethylnitrosamine (DEN) in a rat model. Male Sprague-Dawley rats were injected with 20 mg DEN/kg body weight 1 wk before introduction of either an ethanol liquid diet or an isoenergic control liquid diet. Hepatic pathological lesions, hepatocyte proliferation, apoptosis, PPARα and PPARγ, and plasma insulin-like growth factor 1 (IGF-1) levels were assessed after 6 and 10 mo. Mean body and liver weights, plasma IGF-1 concentration, hepatic expressions of proliferating cellular nuclear antigen and Ki-67, and cyclin D1 in ethanol-fed rats were all significantly lower after 10 mo of treatment compared with control rats. In addition, levels of hepatic PPARγ protein, not PPARα, were significantly higher in the ethanol-fed rats after prolonged treatment. Although ethanol feeding also resulted in significantly fewer altered hepatic foci, hepatocellular adenoma was detected in ethanol-fed rats at 10 mo, but not in control rats given the same dose of DEN. Together, these results indicate that chronic, excessive ethanol consumption impairs normal hepatocyte proliferation, which is associated with reduced IGF-1 levels, but promotes hepatic carcinogenesis. © 2011 American Society for Nutrition.
Resumo:
In this work pellets containing chitosan for colonic drug delivery were developed. The influence of the polysaccharide in the pellets was evaluated by swelling, drug dissolution and intestinal permeation studies. Drug-loaded pellets containing chitosan as swellable polymer were coated with an inner layer of Kollicoat® SR 30 D and an outer layer of the enteric polymer Kollicoat® MAE 30 DP in a fluidized-bed apparatus. Metronidazole released from pellets was assessed using Bio-Dis dissolution method. Swelling, drug release and intestinal permeation were dependent on the chitosan and the coating composition. The drug release data fitted well with the Weibull equation, indicating that the drug release was controlled by diffusion, polymer relaxation and erosion occurring simultaneously. The film coating was found to be the main factor controlling the drug release and the chitosan controlling the drug intestinal permeation. Coated pellets containing chitosan show great potential as a system for drug delivery to the colon. © 2012 Elsevier Ltd.
Resumo:
Background: Hepatic encephalopathy (HE) is a severe complication in patients with hepatic cirrhosis, which causes numerous hospital admissions and deaths. Antibiotics are the best options in HE treatment, but head-to-head comparisons between these drugs are scarce. Erythromycin combines the antimicrobial effect and prokinetic properties in the same drug, but it has never been used in HE treatment. Our aim was to evaluate the efficacy of erythromycin as an HE treatment.Methods: We achieved a randomized controlled trial of adult patients with HE and hepatic cirrhosis admitted in our hospital. After randomization, the subjects received either erythromycin 250 mg or neomycin 1 g orally QID until hospital discharge or prescription of another antibiotic. All subjects were blindly evaluated every day towards quantifying clinical, neuropsychometric, hepatic and renal exams. Statistical analysis was employed to compare the groups and correlate the variables with hospitalization duration.Results: 30 patients were evaluated (15 treated with each drug). At hospital admission, the groups were homogeneous, but the erythromycin group subjects achieved a shorter hospitalization stay (p = 0.032) and a more expressive reduction in alanine aminotranspherase levels (p = 0.026). Hospitalization duration was positively correlated with C reactive protein levels measured previous to (p = 0.015) and after treatment (p = 0.01).Conclusions: In the sample evaluated erythromycin was associated with significant reductions in hospital stay and in alanine aminotranspherase values. Hospitalization time was positive correlated with C reactive protein levels measured before and after the treatments. © 2013 Romeiro et al.; licensee BioMed Central Ltd.
Resumo:
The objective of this experiment was to evaluate the effects of glucose infusion on serum concentrations of glucose, insulin, and progesterone (P4), as well as mRNA expression of hepatic CYP2C19 and CYP3A4 in nonlactating, ovariectomized cows in adequate nutritional status. Eight Gir × Holstein cows were maintained on a low-quality Brachiaria brizantha pasture with reduced forage availability, but they individually received, on average, 3. kg/cow daily (as fed) of a corn-based concentrate from d -28 to 0 of the experiment. All cows had an intravaginal P4-releasing device inserted on d -14, which remained in cows until the end of the experiment (d 1). On d 0, cows were randomly assigned to receive, in a crossover design containing 2 periods of 24. h each (d 0 and 1), (1) an intravenous glucose infusion (GLUC; 0.5. g of glucose/kg of BW, over a 3-h period) or (2) an intravenous saline infusion (SAL; 0.9%, over a 3-h period). Cows were fasted for 12. h before infusions, and they remained fasted during infusion and sample collections. Blood samples were collected at 0, 3, and 6. h relative to the beginning of infusions. Liver biopsies were performed concurrently with blood collections at 0 and 3. h. After the last blood collection of period 1, cows received concentrate and returned to pasture. Cows gained BW (16.5 ± 3.6. kg) and BCS (0.08 ± 0.06) from d -28 to 0. Cows receiving GLUC had greater serum glucose and insulin concentrations at 3. h compared with SAL cohorts. No treatment effects were detected for serum P4 concentrations, although mRNA expression of CYP2C19 and CYP3A4 after the infusion period was reduced for cows in the GLUC treatment compared with their cohorts in the SAL treatment. In conclusion, hepatic CYP3A4 and CYP2C19 mRNA expression can be promptly modulated by glucose infusion followed by acute increases in circulating insulin, which provides novel insight into the physiological mechanisms associating nutrition and reproductive function in dairy cows. © 2013 American Dairy Science Association.
Resumo:
Background: Obesity, oxidative stress and inflammation, by triggering insulin resistance, may contribute to the accumulation of hepatic fat, and this accumulation by lipotoxicity can lead the organ to fail. Because obesity is growing at an alarming rate and, worryingly, in a precocious way, the present study aimed to investigate the effects of moderate physical training performed from childhood to adulthood on liver fat metabolism in rats. Methods. Twenty rats that were 28days old were divided into two groups: control (C) and trained (T). The C Group was kept in cages without exercise, and the T group was submitted to swimming exercise for 1hour/day, 5days/week from 28 to 90days of age (8weeks) at 80% of the anaerobic threshold determined by the lactate minimum test. At the end of the experiment, the body weight gain, insulin sensitivity (glucose disappearance rate during the insulin tolerance test), concentrations of free fatty acids (FFA) and triglycerides (TG) and hepatic lipogenic rate were analyzed. For the statistical analysis, the Student t-test was used with the level of significance preset at 5%. Results: The T group showed lower body weight gain, FFA concentrations, fat accumulation, hepatic lipogenic rate and insulin resistance. Conclusion: The regular practice of moderate physical exercise from childhood can contribute to the reduction of obesity and insulin resistance and help prevent the development of accumulation of hepatic fat in adulthood. © 2013de Moura et al; licensee BioMed Central Ltd.
Resumo:
Silibinin is a polyphenolic plant flavonoid with anti-inflammatory properties. The present study investigated the effect of silibinin on oxidative metabolism and cytokine production - tumor necrosis factor-alpha (TNF-α), interleukin (IL)12, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, IL-10, and transforming growth factor beta (TGF-β1) - by peripheral blood monocytes (PBM) from preeclamptic pregnant women. It is a case-controlled study involving women with preeclampsia (PE, n = 30) compared with normotensive pregnant (NT, n = 30) and with non-pregnant (NP, n = 30) women. Monocytes were obtained and cultured with or without silibinin (5 μM or 50 μM) for 18 h. Superoxide anion (O2-) and hydrogen peroxide (H2O2) release were determined by specific assays, and cytokine levels were determined by immunoenzymatic assays (ELISA). Monocytes from preeclamptic women cultured without stimulus released higher levels of O22, H2O2 and TNF-α, and lower levels of IL-10 and TGF-β1 than did monocytes from NT and NP women. Treatment in vitro with silibinin significantly inhibited spontaneous O2- and H2O2 release and TNF-α production by monocytes from preeclamptic women. The main effect of silibinin was obtained at 50 μM concentration. Thus, silibinin exerts anti-oxidative and anti-inflammatory effects on monocytes from preeclamptic pregnant women by inhibiting the in vitro endogenous release of reactive oxygen species and TNF-α production.
Resumo:
This work describes the mutagenic response of Sudan III, an adulterant food dye, using Salmonella typhimurium assay and the generation of hazardous aromatic amines after different oxidation methods of this azo dye. For that, we used metabolic activation by S9, catalytic oxidation by ironporphyrin and electrochemistry oxidation in order to simulate endogenous oxidation conditions. The oxidation reactions promoted discoloration from 65% to 95% of Sudan III at 1×10-4molL-1 and generation of 7.6×10-7molL-1 to 0.31×10-4molL-1 of aniline, o-anisidine, 2-methoxi-5-methylaniline, 4-aminobiphenyl, 4,4'-oxydianiline; 4,4'-diaminodiphenylmethane and 2,6-dimethylaniline. The results were confirmed by LC-MS-MS experiments. We also correlate the mutagenic effects of Sudan III using S. typhimurium with the strain TA1535 in the presence of exogenous metabolic activation (S9) with the metabolization products of this compound. Our findings clearly indicate that aromatic amines are formed due to oxidative reactions that can be promoted by hepatic cells, after the ingestion of Sudan III. Considering that, the use of azo compounds as food dyestuffs should be carefully controlled. © 2013 Elsevier Ltd.
Resumo:
The effects and susceptibility of donkeys to Crotalaria juncea and Crotalaria retusa poisoning were determined at high and low doses. Seeds of C. juncea containing 0.074% of dehydropyrrolizidine alkaloids (DHPAs) (isohemijunceines 0.05%, trichodesmine 0.016%, and junceine 0.008%) were administered to three donkeys at 0.3, 0.6 and 1g/kg body weight (g/kg) daily for 365 days. No clinical signs were observed and, on liver and lung biopsies, the only lesion was a mild liver megalocytosis in the donkeys ingesting 0.6 and 1g/kg/day. Two other donkeys that received daily doses of 3 and 5g seed/kg showed initial respiratory signs 70 and 40 days after the start of the administration, respectively. The donkeys were euthanized following severe respiratory signs and the main lung lesions were proliferation of Clara cells and interstitial fibrosis. Three donkeys ingested seeds of C. retusa containing 5.99% of monocrotaline at daily doses of 0.025, 0.05 and 0.1g/kg for 365 days. No clinical signs were observed and, on liver and lung biopsies, the only lesion was moderate liver megalocytosis in each of the three donkeys. One donkey that received a single dose of 5g/kg of C. retusa seeds and another that received 1g/kg daily for 7 days both showed severe clinical signs and died with diffuse centrilobular liver necrosis. No lung lesions were observed. Another donkey that received a single dose of 2.5g/kg of C. retusa seeds showed no clinical signs. The hepatic and pneumotoxic effects observed are consistent with an etiology involving DHPAs. Furthermore, the occurrence of lung or liver lesions correlates with the type of DHPAs contained in the seeds. Similarly as has been reported for horses, the data herein suggest that in donkeys some DHPAs are metabolized in the liver causing liver disease, whereas others are metabolized in the lung by Clara cells causing lung disease. © 2013 Elsevier Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Alimentos e Nutrição - FCFAR