847 resultados para Heat decomposition
Resumo:
We analyze the heat transfer between two nanoparticles separated by a distance lying in the near-field domain in which energy interchange is due to the Coulomb interactions. The thermal conductance is computed by assuming that the particles have charge distributions characterized by fluctuating multipole moments in equilibrium with heat baths at two different temperatures. This quantity follows from the fluctuation-dissipation theorem for the fluctuations of the multipolar moments. We compare the behavior of the conductance as a function of the distance between the particles with the result obtained by means of molecular dynamics simulations. The formalism proposed enables us to provide a comprehensive explanation of the marked growth of the conductance when decreasing the distance between the nanoparticles.
Resumo:
We compute the influence action for a system perturbatively coupled to a linear scalar field acting as the environment. Subtleties related to divergences that appear when summing over all the modes are made explicit and clarified. Being closely connected with models used in the literature, we show how to completely reconcile the results obtained in the context of stochastic semiclassical gravity when using mode decomposition with those obtained by other standard functional techniques.
Resumo:
We point out that using the heat kernel on a cone to compute the first quantum correction to the entropy of Rindler space does not yield the correct temperature dependence. In order to obtain the physics at arbitrary temperature one must compute the heat kernel in a geometry with different topology (without a conical singularity). This is done in two ways, which are shown to agree with computations performed by other methods. Also, we discuss the ambiguities in the regularization procedure and their physical consequences.
Resumo:
Thermal fluctuations around inhomogeneous nonequilibrium steady states of one-dimensional rigid heat conductors are analyzed in the framework of generalized fluctuating hydrodynamics. The effect of an external source of noise is also considered. External fluctuations come from temperature and position fluctuations of the source. Contributions of each kind of noise to the temperature correlation function are computed and compared through the study of its asymptotic behavior.
Resumo:
A significant quantity of nutrients in vineyards may return to the soil each year through decomposition of residues from cover plants. This study aimed to evaluate biomass decomposition and nutrient release from residues of black oats and hairy vetch deposited in the vines rows, with and without plastic shelter, and in the between-row areas throughout the vegetative and productive cycle of the plants. The study was conducted in a commercial vineyard in Bento Gonçalves, RS, Brazil, from October 2008 to February 2009. Black oat (Avena strigosa) and hairy vetch (Vicia villosa) residues were collected, subjected to chemical (C, N, P, K, Ca, and Mg) and biochemical (cellulose - Cel, hemicellulose - Hem, and lignin - Lig content) analyses, and placed in litter bags, which were deposited in vines rows without plastic shelter (VPRWS), in vines rows with plastic shelter (VPRS), and in the between-row areas (BR). We collected the residues at 0, 33, 58, 76, and 110 days after deposition of the litter bags, prepared the material, and subjected it to analysis of total N, P, K, Ca, and Mg content. The VPRS contained the largest quantities and percentages of dry matter and residual nutrients (except for Ca) in black oat residues from October to February, which coincides with the period from flowering up to grape harvest. This practice led to greater protection of the soil surface, avoiding surface runoff of the solution derived from between the rows, but it retarded nutrient cycling. The rate of biomass decomposition and nutrient release from hairy vetch residues from October to February was not affected by the position of deposition of the residues in the vineyard, which may especially be attributed to the lower values of the C/N and Lig/N ratios. Regardless of the type of residue, black oat or hairy vetch, the greatest decomposition and nutrient release mainly occurred up to 33 days after deposition of the residues on the soil surface, which coincided with the flowering of the grapevines, which is one of the phenological stages of greatest demand for nutrients.
Resumo:
Molecular chaperones are central to cellular protein homeostasis. In mammals, protein misfolding diseases and aging cause inflammation and progressive tissue loss, in correlation with the accumulation of toxic protein aggregates and the defective expression of chaperone genes. Bacteria and non-diseased, non-aged eukaryotic cells effectively respond to heat shock by inducing the accumulation of heat-shock proteins (HSPs), many of which molecular chaperones involved in protein homeostasis, in reducing stress damages and promoting cellular recovery and thermotolerance. We performed a meta-analysis of published microarray data and compared expression profiles of HSP genes from mammalian and plant cells in response to heat or isothermal treatments with drugs. The differences and overlaps between HSP and chaperone genes were analyzed, and expression patterns were clustered and organized in a network. HSPs and chaperones only partly overlapped. Heat-shock induced a subset of chaperones primarily targeted to the cytoplasm and organelles but not to the endoplasmic reticulum, which organized into a network with a central core of Hsp90s, Hsp70s, and sHSPs. Heat was best mimicked by isothermal treatments with Hsp90 inhibitors, whereas less toxic drugs, some of which non-steroidal anti-inflammatory drugs, weakly expressed different subsets of Hsp chaperones. This type of analysis may uncover new HSP-inducing drugs to improve protein homeostasis in misfolding and aging diseases.
Resumo:
The heat shock response (HSR) is a highly conserved molecular response to various types of stresses, including heat shock, during which heat-shock proteins (Hsps) are produced to prevent and repair damages in labile proteins and membranes. In cells, protein unfolding in the cytoplasm is thought to directly enable the activation of the heat shock factor 1 (HSF-1), however, recent work supports the activation of the HSR via an increase in the fluidity of specific membrane domains, leading to activation of heat-shock genes. Our findings support the existence of a plasma membrane-dependent mechanism of HSF-1 activation in animal cells, which is initiated by a membrane-associated transient receptor potential vanilloid receptor (TRPV). We found in various non-cancerous and cancerous mammalian epithelial cells that the TRPV1 agonists, capsaicin and resiniferatoxin (RTX), upregulated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70 and Hsp90 respectively, while the TRPV1 antagonists, capsazepine and AMG-9810, attenuated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70, Hsp90, respectively. Capsaicin was also shown to activate HSF-1. These findings suggest that heat-sensing and signaling in mammalian cells is dependent on TRPV channels in the plasma membrane. Thus, TRPV channels may be important drug targets to inhibit or restore the cellular stress response in diseases with defective cellular proteins, such as cancer, inflammation and aging.
Resumo:
Recent evidence questions some conventional view on the existence of income-related inequalities in depression suggesting in turn that other determinants might be in place, such as activity status and educational attainment. Evidence of socio-economic inequalities is especially relevant in countries such as Spain that have a limited coverage of mental health care and are regionally heterogeneous. This paper aims at measuring and explaining the degree of socio-economic inequality in reported depression in Spain. We employ linear probability models to estimate the concentration index and its decomposition drawing from 2003 edition of the Spanish National Health Survey, the most recent representative health survey in Spain. Our findings point towards the existence of avoidable inequalities in the prevalence of reported depression. However, besides ¿pure income effects¿ explaining 37% of inequality, economic activity status (28%), education (15%) and demographics (15%) play also a key encompassing role. Although high income implies higher resources to invest and cure (mental) illness, environmental factors influencing in peoples perceived social status act as indirect path as explaining the prevalence of depression. Finally, we find evidence of a gender effect, gender social-economic inequality in income is mainly avoidable.
Resumo:
Introduction: Small for gestational age (SGA) is an important problem affecting 10% of pregnancies and is associated with significant perinatal morbidity. In about 80% of cases, a probable etiology or a major risk factor can be identified. But almost 20% of SGA cases are considered unexplained. The 60-kDa heat shock protein (HSP60) is a highly immunogenic protein whose synthesis is greatly upregulated under nonphysiological conditions. Bacterial and human HSP60 share a high degree of sequence homology, and immunity to conserved epitopes may result in development of autoimmunity following a bacterial infection. We hypothesized that unexplained SGA could be the consequence of immune sensitization to human HSP60. Methods: Unexplained SGA fetuses were identified by ultrasound biometry with normal Doppler velocimetry and with no detectable maternal or fetal abnormalities. Fetal sera were obtained by cordocentesis performed for a karyotype analysis in cases of unexplained SGA (study group) or for screening of Rhesus incompatibility (control group). Fetal sera were tested for HSP60 antigen and for IgG and IgM anti-HSP60 by ELISA as well as for other immune and hematological parameters. Results: Maternal parameters were similar between the 12 study cases and the 23 control cases. The mean gestational age at cordocentesis was 29 weeks. IgM anti-HSP60 was detected in 12 cases (100%) and in no controls (p < 0.00017), while IgG anti-HSP60 was detected in 7 cases (58%) and only 1 control (p < 0.001). Three of the 4 cases with the highest IgM antibody levels died. There were no differences in fetal serum levels of HSP60 antigen or other immune and hematological markers between the two groups. Conclusion: Fetuses with unexplained SGA are positive for IgM and IgG antibody to human HSP60 and the specific IgM antibody level is predictive of fetal mortality. Detection of these antibodies indicates that a placental perturbation and a fetal autoimmune reaction to HSP60 are associated with this developmental delay.
Resumo:
Recognition by the T-cell receptor (TCR) of immunogenic peptides (p) presented by class I major histocompatibility complexes (MHC) is the key event in the immune response against virus infected cells or tumor cells. The major determinant of T cell activation is the affinity of the TCR for the peptide-MHC complex, though kinetic parameters are also important. A study of the 2C TCR/SIYR/H-2Kb system using a binding free energy decomposition (BFED) based on the MM-GBSA approach had been performed to assess the performance of the approach on this system. The results showed that the TCR-p-MHC BFED including entropic terms provides a detailed and reliable description of the energetics of the interaction (Zoete and Michielin, 2007). Based on these results, we have developed a new approach to design sequence modifications for a TCR recognizing the human leukocyte antigen (HLA)-A2 restricted tumor epitope NY-ESO-1. NY-ESO-1 is a cancer testis antigen expressed not only in melanoma, but also on several other types of cancers. It has been observed at high frequencies in melanoma patients with unusually positive clinical outcome and, therefore, represents an interesting target for adoptive transfer with modified TCR. Sequence modifications of TCR potentially increasing the affinity for this epitope have been proposed and tested in vitro. T cells expressing some of the proposed TCR mutants showed better T cell functionality, with improved killing of peptide-loaded T2 cells and better proliferative capacity compared to the wild type TCR expressing cells. These results open the door of rational TCR design for adoptive transfer cancer therapy.
Resumo:
The decomposition process of Ruppia cirrhosa was studied in a Mediterranean coastal lagoon in the Delta of the River Ebro (NE Spain). Leaves and shoots of Ruppia were enclosed in 1 mm-mesh and 100 pm-mesh litter bags to ascertain the effect of detritivores, macroinvertebrates, and bacteria and fungi, respectively. Changes in biomass and carbon, and, nitrogen and phosphorus concentrations in the detritus were studied at the sediment-water interface and in the sediment. Significant differences in biomass decay were observed between the two bag types. Significant differences in decomposition were observed between the two experimental conditions studied using 100 pm-mesh bags. These differences were not significant when using the 1 mm-mesh bags. The carbon content in the detritus remained constant during the decomposition process. The percentage of nitrogen increased progressively from an initial 2.4 % to 3 %. The percentage of phosphorus decreased rapidly during the first two days of decomposition from an initial 0.26 % to 0.17 %. This loss is greater in the sediment than in the water column or at the sediment-water interface. From these results we deduce that the activity of microorganisms seems to be more important in the sediment than in the water-sediment interface, and that grazing by macroinvertebrates has less importance in the sediment than in the water column.
Resumo:
Heat straightening of steel beams on bridges struck by over height trucks has become common practice in recent years in Iowa. A study of the effects of this heat straightening on the steel beams thus straightened is needed. Appropriate samples for mechanical and metallurgical tests were cut from the same rolled beam from the end which was heated and the end which was not heated and the test results were compared. The test results showed beyond doubt that the steel was being heated beyond the permitted temperature and that the impact properties are being drastically reduced by the current method of heat straightening.