973 resultados para HUMAN EPIDERMAL-KERATINOCYTES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have cloned a fusion partner of the MLL gene at 11q23 and identified it as the gene encoding the human formin-binding protein 17, FBP17. It maps to chromosome 9q34 centromeric to ABL. The gene fusion results from a complex chromosome rearrangement that was resolved by fluorescence in situ hybridization with various probes on chromosomes 9 and 11 as an ins(11;9)(q23;q34)inv(11)(q13q23). The rearrangement resulted in a 5′-MLL/FBP17-3′ fusion mRNA. We retrovirally transduced murine-myeloid progenitor cells with MLL/FBP17 to test its transforming ability. In contrast to MLL/ENL, MLL/ELL and other MLL-fusion genes, MLL/FBP17 did not give a positive readout in a serial replating assay. Therefore, we assume that additional cooperating genetic abnormalities might be needed to establish a full malignant phenotype. FBP17 consists of a C-terminal Src homology 3 domain and an N-terminal region that is homologous to the cell division cycle protein, cdc15, a regulator of the actin cytoskeleton in Schizosaccharomyces pombe. Both domains are separated by a consensus Rho-binding motif that has been identified in different Rho-interaction partners such as Rhotekin and Rhophilin. We evaluated whether FBP17 and members of the Rho family interact in vivo with a yeast two-hybrid assay. None of the various Rho proteins tested, however, interacted with FBP17. We screened a human kidney library and identified a sorting nexin, SNX2, as a protein interaction partner of FBP17. These data provide a link between the epidermal growth factor receptor pathway and an MLL fusion protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cadherins are homotypic adhesion molecules that classically mediate interactions between cells of the same type in solid tissues. In addition, E-cadherin is able to support homotypic adhesion of epidermal Langerhans cells to keratinocytes (Tang, A., Amagai, M., Granger, L. G., Stanley, J. R. & Udey, M. C. (1993) Nature (London) 361, 82-85) and heterotypic adhesion of mucosal epithelial cells to E-cadherin-negative intestinal intraepithelial T lymphocytes. Thus, we hypothesized that cadherins may play a wider role in cell-to-cell adhesion events involving T lymphocytes. We searched for a cadherin or cadherins in T lymphocytes with a pan-cadherin antiserum and antisera against alpha- or beta-catenin, molecules known to associate with the cytoplasmic domain of cadherins. The anti-beta-catenin antisera coimmunoprecipitated a radiolabeled species in T-lymphocyte lines that had a molecular mass of 129 kDa and was specifically immunoblotted with the pan-cadherin antiserum. Also, the pan-cadherin antiserum directly immunoprecipitated a 129-kDa radiolabeled species from an 125I surface-labeled Jurkat human T-cell leukemic cell line. After V8 protease digestion, the peptide map of this pan-cadherin-immunoprecipitated, 129-kDa species exactly matched that of the 129-kDa species coimmunoprecipitated with the beta-catenin antiserum. These results demonstrate that T lymphocytes express a catenin-associated protein that appears to be a member of the cadherin superfamily and may contribute to T cell-mediated immune surveillance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The therapeutic application of growth factors to human disease has become closer to reality with the advent of faster means of synthesizing these molecules and novel drug delivery strategies. Epidermal growth factor (EGF) belongs to a large family of molecules with the ability to modulate growth. Purified extracts of EGF have been used clinically to modulate gastrointestinal secretion of hormones and accelerate healing. EGF is also reported to have both vascular smooth muscle contractile and relaxing activity Cardiovascular studies were performed with the bioactive 48-amino acid fragment of human EGF in rodents and primates to determine the effects of EGF on blood pressure and heart rate in conscious animals. Intravenous infusion of EGF induced an initial pressor response in rats followed by a prolonged decrease in blood pressure. In contrast, in monkeys, EGF had dose-related blood pressure-lowering effects only; significant hypotension was observed at doses ranging from 3 to 300 microg/kg i.v. Hypotension was associated with modest tachycardia in both species. To our knowledge, this is the first report of hemodynamic effects of EGF in primates, and it clearly documents that the mitogenic role of growth factors such as EGF is but one aspect of their physiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High levels of the p53 protein are immunohistochemically detectable in a majority of human nonmelanoma skin cancers and UVB-induced murine skin tumors. These increased protein levels are often associated with mutations in the conserved domains of the p53 gene. To investigate the timing of the p53 alterations in the process of UVB carcinogenesis, we used a well defined murine model (SKH:HR1 hairless mice) in which the time that tumors appear is predictable from the UVB exposures. The mice were subjected to a series of daily UVB exposures, either for 17 days or for 30 days, which would cause skin tumors to appear around 80 or 30 weeks, respectively. In the epidermis of these mice, we detected clusters of cells showing a strong immunostaining of the p53 protein, as measured with the CM-5 polyclonal antiserum. This cannot be explained by transient accumulation of the normal p53 protein as a physiological response to UVB-induced DNA damage. In single exposure experiments the observed transient CM-5 immunoreactivity lasted for only 3 days and was not clustered, whereas these clusters were still detectable as long as 56 days after 17 days of UVB exposure. In addition, approximately 70% of these patches reacted with the mutant-specific monoclonal antibody PAb240, whereas transiently induced p53-positive cells did not. In line with indicative human data, these experimental results in the hairless mouse model unambiguously demonstrate that constitutive p53 alterations are causally related to chronic UVB exposure and that they are a very early event in the induction of skin cancer by UVB radiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is increasing evidence that activation of the insulin-like growth factor I (IGF-I) receptor plays a major role in the control of cellular proliferation of many cell types. We studied the mitogenic effects of IGF-I, IGF-II, and epidermal growth factor (EGF) on growth-arrested HT-3 cells, a human cervical cancer cell line. All three growth factors promoted dose-dependent increases in cell proliferation. In untransformed cells, EGF usually requires stimulation by a "progression" factor such as IGF-I, IGF-II, or insulin (in supraphysiologic concentrations) in order to exert a mitogenic effect. Accordingly, we investigated whether an autocrine pathway involving IGF-I or IGF-II participated in the EGF-induced mitogenesis of HT-3 cells. With the RNase protection assay, IGF-I mRNA was not detected. However, IGF-II mRNA increased in a time-dependent manner following EGF stimulation. The EGF-induced mitogenesis was abrogated in a dose-dependent manner by IGF-binding protein 5 (IGFBP-5), which binds to IGF-II and neutralizes it. An antisense oligonucleotide to IGF-II also inhibited the proliferative response to EGF. In addition, prolonged, but not short-term, stimulation with EGF resulted in autophosphorylation of the IGF-I receptor, and coincubations with both EGF and IGFBP-5 attenuated this effect. These data demonstrate that autocrine secretion of IGF-II in HT-3 cervical cancer cells can participate in EGF-induced mitogenesis and suggest that autocrine signals involving the IGF-I receptor occur "downstream" of competence growth factor receptors such as the EGF receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interleukin (IL) 2 signaling requires the dimerization of the IL-2 receptor beta (IL-2R beta) and common gamma (gamma c) chains. The gamma is also a component of the receptors for IL-4, IL-7, and IL-9. To assess the extent and role of the receptor signal transducing system utilizing the gamma c chain on human intestinal epithelial cells, the expression of gamma c, IL-2R beta, and receptor chains specific for IL-4, IL-7, and IL-9 was assessed by reverse transcription-coupled PCR on human intestinal epithelial cell lines and on isolated primary human intestinal epithelial cells. Caco-2, HT-29, and T-84 cells were found to express transcripts for the gamma c and IL-4R chains constitutively. IL-2R beta chain expression was demonstrated in Caco-2 and HT-29 but not in T-84 cells. None of the cell lines expressed mRNA for the IL-2R alpha chain. After stimulation with epidermal growth factor for 24 h Caco-2, HT-29, and T-84 cells expressed transcripts for IL-7R. In addition, Caco-2 and HT-29 cells expressed mRNA for the IL-9R. Receptors for IL-2, IL-4, IL-7, and IL-9 on intestinal epithelial cells lines appeared to be functional; stimulation with these cytokines caused rapid tyrosine phosphorylation of proteins. The relevance of the observations in intestinal epithelial cell lines for intestinal epithelial function in vivo was supported by the demonstration of transcripts for gamma c, IL-2R beta, IL-4R, IL-7R, and IL-9R in primary human intestinal epithelial cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-05

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although immune responses leading to rejection of transplantable tumours have been well studied, requirements for epithelial tumour rejection are unclear. Here, we use human growth hormone (hGH) expressed in epithelial cells (skin keratinocytes) as a model neo-self antigen to investigate the consequences of antigen presentation from epithelial cells. Mice transgenic for hGH driven from the keratin 14 promoter express hGH in skin keratinocytes. This hGH-transgenic skin is not rejected by syngeneic non-transgenic recipients, although an antibody response to hGH develops in grafted animals. Systemic immunization of graft recipients with hGH peptides, or local administration of stimulatory anti-CD40 antibody, induces temporary macroscopic graft inflammation, and an obvious dermal infiltrate of inflammatory cells, but not graft rejection. These results suggest that a neo-self antigen expressed in somatic cells in skin can induce an immune response that can be enhanced further by induction of specific immunity systemically or non-specific immunity locally. However, immune responses do not always lead to rejection, despite induction of local inflammatory changes. Therefore, in vitro immune responses and in vivo delayed type hypersensitivity are not surrogate markers for immune responses effective against epithelial cells expressing neoantigens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A short-term whole-skin organ culture model has been established to enable the investigation of cell cycle perturbations in epidermal layer cells following exposure to ultraviolet radiation (UVR). This model affords the opportunity to manipulate the growth and nutrient conditions, and to perform detailed biochemical and immunohistochemical analysis of skin cells in their normal epidermal layer microenvironment. The use of this model is described in this chapter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By establishing mouse primary keratinocytes (KCs) in culture, we were able, for the first time, to express papillomavirus major capsid (L1) proteins by transient transfection of authentic or codon-modified L1 gene expression plasmids. We demonstrate in vitro and in vivo that gene codon composition is in part responsible for differentiation-dependent expression of L1 protein in KCs. L1 mRNA was present in similar amounts in differentiated and undifferentiated KCs transfected with authentic or codon-modified L1 genes and had a similar half-life, demonstrating that L1 protein production is posttranscriptionally regulated. We demonstrate further that KCs substantially change their tRNA profiles upon differentiation. Aminoacyl-tRNAs from differentiated KCs but not undifferentiated KCs enhanced the translation of authentic L1 mRNA, suggesting that differentiation-associated change to tRNA profiles enhances L1 expression in differentiated KCs. Thus, our data reveal a novel mechanism for regulation of gene expression utilized by a virus to direct viral capsid protein expression to the site of virion assembly in mature KCs. Analysis of two structural proteins of KCs, involucrin and keratin 14, suggests that translation of their mRNAs is also regulated, in association with KC differentiation in vitro, by a similar mechanism

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A significant proportion of the human population suffers from some form of skin disorder, whether it be from burn injury or inherited skin anomalies. The ideal treatment for skin disorders would be to regrow skin tissue from stem cells residing in the individual patient's skin. Locating these adult stem cells and elucidating the molecules involved in orchestrating the production of new skin cells are important steps in devising more-efficient methods of skin production and wound healing via the ex vivo expansion of patient keratinocytes in culture. This review focuses on the structure of the skin, the identification of skin stem cells, and the role of Notch, Wnt and Hedgehog signalling cascades in regulating the fate of epidermal stem cells. © 2005 Cambridge University Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In inflammatory disorders (e.g. psoriasis), local concentrations of human neutrophil elastase (HNE), also known as polymorphonuclear leukocyte elastase (HLE), possibly overwhelm its natural inhibitors leading to extracellular matrix degradation. Elevated levels of HNE have been reported in a variety of inflammatory disorders, including psoriasis. Peptidic HNE inhibitors have a common hydrophobic sequence (Ala-Ala-Pro-Val). This peptide sequence inhibits HNE competitively; however the stratum corneum presents an effective barrier to the delivery of this tetrapeptide across the skin. The current work investigates the delivery of the modified peptide whereby the tetrapeptide was lipidated to enhance its ability to penetrate the stratum The tetrapeptide Was Coupled to a racaemic mixture of a short chain lipoamino acid (LAA) resulting in two diastereomers of the lipoamino acid-modified tetrapeptide. The penetration of the lipopeptide mixture was assessed across human epidermis in vitro. The percentage of applied dose penetrating to the receptor over 8 h following administration was 2.53% for the D-LAA conjugate and 1.47% for the L-diastereomer, compared to 0% for the peptide. The D-diastereomer appears to be relatively stable but the L-diastereomer appears to degrade releasing possibly the tetrapeptide and peptide fragment(s). Therefore the results clearly indicate that coupling the tetrapeptide to a short chain LAA enhances its delivery across human epidermis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The skin localization of steroids following topical application is largely unknown. We determined the distribution of five steroids in human skin using excised epidermal, dermal, and full-thickness membranes in vitro. There was no significant difference in steroid maximum flux through epidermal and full-thickness membranes, other than significantly lower fluxes for the most polar steroid, aldosterone. Hydrocortisone had the highest dermal diffusivity and dermal penetration, and the accumulation of hydrocortisone and corticosterone was higher than that of the other steroids. Slower penetration and higher accumulation in the viable epidermis of progesterone in full-thickness skin were consistent with dermal penetration limitation effects associated with high lipophilicity. Copyright (c) 2006 S. Karger AG, Basel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A challenge in epidermal DNA vaccination is the efficient and targeted delivery of polynucleotides to immunologically sensitive Langerhans cells. This paper investigates this particular challenge for physical delivery approaches. The skin immunology and material properties are examined in the context of the physical cell targeting requirements of the viable epidermis. Selected current physical cell targeting technologies engineered to meet these needs are examined: needle and syringe; diffusion patches; liquid jet injectors; microneedle arrays/patches; and biolistic particle injection. The operating methods and relative performance of these approaches are discussed, with a comment on potential future developments and technologies. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The proteinase-activated receptor 2 (PAR-2) expression is increased in endothelial cells derived from women with preeclampsia, characterized by widespread maternal endothelial damage, which occurs as a consequence of elevated soluble vascular endothelial growth factor receptor-1 (sVEGFR-1; commonly known as sFlt-1) in the maternal circulation. Because PAR-2 is upregulated by proinflammatory cytokines and activated by blood coagulation serine proteinases, we investigated whether activation of PAR-2 contributed to sVEGFR-1 release. PAR-2–activating peptides (SLIGRL-NH2 and 2-furoyl-LIGRLO-NH2) and factor Xa increased the expression and release of sVEGFR-1 from human umbilical vein endothelial cells. Enzyme-specific, dominant-negative mutants and small interfering RNA were used to demonstrate that PAR-2–mediated sVEGFR-1 release depended on protein kinase C-ß1 and protein kinase C-e, which required intracellular transactivation of epidermal growth factor receptor 1, leading to mitogen-activated protein kinase activation. Overexpression of heme oxygenase 1 and its gaseous product, carbon monoxide, decreased PAR-2–stimulated sVEGFR-1 release from human umbilical vein endothelial cells. Simvastatin, which upregulates heme oxygenase 1, also suppressed PAR-2–mediated sVEGFR-1 release. These results show that endothelial PAR-2 activation leading to increased sVEGFR-1 release may contribute to the maternal vascular dysfunction observed in preeclampsia and highlights the PAR-2 pathway as a potential therapeutic target for the treatment of preeclampsia.